[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 02/14 11:14 / Filesize : 500 KB / Number-of Response : 993
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 004



490 名前:Kummer ◆g2BU0D6YN2 [2007/01/20(土) 10:16:42 ]
補題
A をネーター環、I を A のイデアル、m を A の極大イデアルとし、
m は V(I) の極小元とする。
I(m) を IA_m の標準射 A → A_m による逆像とする。

このとき A/I(m) は A_m/IA_m に標準的に同型である。

証明
>>486 より I(m) は m に属する準素イデアルである。
>>483 より m^n ⊂ I(m) となる n > 0 がある。
よって V(I(m)) = {m} である。
よって A/I(m) は局所環である。
従って s ∈ A - m なら s は mod I(m) で A/I(m) の可逆元である。

a ∈ A、 s ∈ A - m で a/s ∈ A_m とする。
s は mod I(m) で A/I(m) の可逆元だから、a ≡ sb (mod I(m))
となる b ∈ A がある。

φ: A → A_m を標準射とする。
a/s - φ(b) = a/s - b/1 = (a - sb)/s = φ(a - sb)/φ(s) ∈ IA_m
よって φ: A → A_m と標準射 A_m → A_m/IA_m の合成をψとすると
ψは全射である。
ψの核は I(m) だから A/I(m) は A_m/IA_m に同型である。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<500KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef