[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 02/14 11:14 / Filesize : 500 KB / Number-of Response : 993
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 004



14 名前:Kummer ◆g2BU0D6YN2 [2006/11/24(金) 17:31:51 ]
命題
2次体 Q(√m) の整数環の任意のイデアル I ≠ 0 は
I = [a, b + cω] と一意に書ける(この記法については >>9 参照)。
ここで a > 0, 0 ≦ b < a, c > 0 で a と b は c で割れる。

証明
>>12 と 前スレ3の988より I = [a, b' + cω] と書ける。
ここで a > 0, c > 0 である。前スレ3の996より a と c は I により
一意に決まる。
k を任意の有理整数として I = [a, (b' + ka) + cω] となることは
明らかだろう。従って、b ≡ b' (mod a) で 0 ≦ b < a となる b を
とれば、I = [a, b + cω] となる。b は a により一意に決まる。

a は I に含まれる最小の正の有理整数である。
c は x + yω ∈ I で y > 0 となる最小の y である。
aω ∈ I だから a は c で割れる。

m ≡ 1 (mod 4) なら ω = (1 + √m)/2 であり、
ω^2 = ω - (1 - m)/4 である。

(b + cω)ω = bω + cω^2 = bω + cω - c(1 - m)/4
= (b + c)ω - c(1 - m)/4 ∈ I
よって b + c ≡ 0 (mod c) となる。
よって b ≡ 0 (mod c) となる。

m ≡ 2 (mod 4) または m ≡ 3 (mod 4) なら、
ω = √m であり、 ω^2 = m である。
よって
(b + cω)ω = bω + cω^2 = bω + cm ∈ I
よって b ≡ 0 (mod c) となる。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<500KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef