[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 05/09 18:02 / Filesize : 351 KB / Number-of Response : 990
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

1=0.999… その13.999…



1 名前:132人目の素数さん [2006/10/26(木) 18:36:06 ]
前スレ:1=0.999… その 9.999… science4.2ch.net/test/read.cgi/math/1118452051/
前スレ:1=0.999… その10.999… science4.2ch.net/test/read.cgi/math/1136133055/
前スレ:1=0.999… その11.999… science4.2ch.net/test/read.cgi/math/1142173277/
前スレ:1=0.999… その12.999… science4.2ch.net/test/read.cgi/math/1154943310/
一応激しい論議の結果、回答テンプレートが作成されました >2-5
今後書き込む際には、できるだけまず回答テンプレートを参照してから、それをふまえて行ってください。
また、回答テンプレートへの意見なども自由に書き込んでください。

876 名前:132人目の素数さん mailto:sage [2007/01/16(火) 10:42:37 ]
>>875
「アルキメデスの原理」には2種類あり、君の言っているアルキメデスの
原理は、0.999…=1におけるアルキメデスの原理とは違う方。

877 名前:132人目の素数さん [2007/01/16(火) 10:46:10 ]
どっちも役に立っているわけだが。

878 名前:132人目の素数さん mailto:sage [2007/01/16(火) 11:00:41 ]
実際1=0.999…の真偽を研究している人はいるのかな

879 名前:132人目の素数さん mailto:sage [2007/01/16(火) 11:28:13 ]
>>873みたいなのはあまり役に立たない人間であるという判断には役立ってる


880 名前:132人目の素数さん mailto:sage [2007/01/16(火) 15:28:48 ]
>>878
数学者にはそういう人はいないと思うよ。自己満足のために日々数学を楽しんでいるアマチュアの中で
日々思索を楽しんでる割にはまっとうな数学をあまり学んだことのない人の中にはいるかも。

881 名前:132人目の素数さん mailto:sage [2007/01/16(火) 17:29:51 ]
conwayはアマチュアではないだろう

882 名前:132人目の素数さん mailto:sage [2007/01/16(火) 17:53:55 ]
1=0.999…の両辺を2乗したらどうなるのでしょう

883 名前:132人目の素数さん mailto:sage [2007/01/16(火) 21:09:36 ]
0.89999999…
0.08999999…
0.00899999…
0.00089999…
0.00008999…
0.00000899…
0.00000089…
0.00000008…
………………
加えると
0.99999999…

よって
1=0.999…

884 名前:132人目の素数さん mailto:sage [2007/01/16(火) 21:14:29 ]
初めて数学板来たけどカオスすぎてわけわからん
中学、高校生がわからない問題出し合ってるくらいかと思ってた
さっさとゲハに戻りますね(´・ω・`)



885 名前:132人目の素数さん [2007/01/16(火) 21:18:57 ]
VIPからきますた

886 名前:132人目の素数さん mailto:sage [2007/01/18(木) 03:09:43 ]
>>867

>>866じゃないけど。
サイトで見た超現実数の説明とヤフーで昔見た超現実数の説明をもとに説明してみる。
これを叩き台にでもして書いてくれ。
間違いやオリジナルとの違いとか知ってる人は教えてくれたらうれしい。
以下を見てもらうとわかるように二進法と相性がいいので証明は二進法表示での0.111……≠1を、そのために0.000……≠0を示す形で行う。

まず超現実数αとは二つの「空集合か超現実数の集合aとAのペア」α=(a,A)で、
¬(a≧A)、つまりx∈a,y∈A⇒¬(x≧y)の形をしたものである。(当然x,yの大小が事前に必要になるので、これらが、例えば帰納的に定義されて欲しい。)

超現実数同士の大小は以下のように定義される。
α=(a,A)、β=(b,B)とするとき、

α≦β⇔¬(a≧β)∧¬(α≧B)
ただしa≧β⇔(x∈a⇒x≧β)等

また
α≧β⇔β≦α

887 名前:886 mailto:sage [2007/01/18(木) 03:11:07 ]
超現実数は標準的には以下の順序で帰納的に作られるものである。

第0段階
(φ,φ)これを0と名付ける
(最初の定義がa<Aとかではなく否定形になっているのはこのように空集合さえ用意すれば自動的に成立することを利用するため)

0段階までにある数

(全角がこの段階で生まれた数)

第1段階
(φ,{0})これを-1と名付ける
←とも書くこととする
({0},φ)これを1と名付ける
→とも書くこととする
(なお、これらを以下(φ,0)のように略記する)

1段階までにある数
←,0,→
−1,0,1
(大小の定義より小さい順に並んでいることを確認できる。以下も同様。また、定義より(0,0)は超現実数にならないことに注意)

888 名前:132人目の素数さん mailto:sage [2007/01/18(木) 03:11:58 ]
第2段階
(φ,-1)=(φ,←)これを-2と名付ける
←←とも書くこととする
(-1,0)=(←,0)これを-1/2と名付ける
←→とも書くこととする
(0,1)=(0,→)これを1/2と名付ける
→←とも書くこととする
(1,φ)=(→,φ)これを2と名付ける
→→とも書くこととする

2段階までにある数
←←,←,←→,0,→←,→,→→
−2,-1,−1/2,0,1/2,1,2
(({0,1},φ)とかも超現実数ではあるが、大小の定義より、これは明らかに(1,φ)に等しくなる。一般にα=(a,A)のaとAが空でない有限集合の時は、αは(MAX(a),min(A))であることに注意。)

889 名前:132人目の素数さん mailto:sage [2007/01/18(木) 03:12:29 ]
第3段階
(φ,-2)=(φ,←←)これを-3と名付ける
←←←とも書くこととする
(-2,-1)=(←←,←)これを-3/2と名付ける
←←→とも書くこととする
(-1,-1/2)=(←,←→)これを-3/4と名付ける
←→←とも書くこととする
(-1/2,0)=(←→,0)これを-1/4と名付ける
←→→とも書くこととする
(0,1/2)=(0,→←)これを1/4と名付ける
→←←とも書くこととする
(1/2,1)=(→←,→)これを3/4と名付ける
→←→とも書くこととする
(1,2)=(→,→→)これを3/2と名付ける
→→←とも書くこととする
(2,φ)=(→→,φ)これを3と名付ける
→→→とも書くこととする

3段階までにある数
←←←,←←,←←→,←,←→←,←→,←→→,0,→←←,→←,→←→,→,→→←,→→,→→→
−3,-2,−3/2,-1,−3/4,-1/2,−1/4,0,1/4,1/2,3/4,1,3/2,2,3


このように第n段階はn-1段階に生成された数とその段階で隣り合う数のペアか、両端に関してはその側に空集合を置いたペアで作られるものになる。(それらはペアの平均か±1させた数である)

そして、それは「最初と同じ向きに進み続けるときは1だけ変化させ、一度逆向きになったら今度は前回の1/2倍だけ変化させる。←なら引き、→なら加える」という計算によって求まる値になる。例えば→→←←→←は1+1-1/2-1/4+1/8-1/16=1.3125になる。

890 名前:886 mailto:sage [2007/01/18(木) 03:16:01 ]
コテ入れ忘れてた(汗
続き

これを全ての自然数nに対して第n段階の操作を行った結果できた∞段階の後、その次の段階を行ったω段階まで考え、その全体を標準的な超現実数と呼ぼう。
二進法での有限小数は∞段階までで全て現れるはずなので、ω段階は二進法での無限小数を生み出す操作と考えられる。このような無限小数は超現実数が
1個の集合のペアとしては表現できず、例えば1/3=({1/4,5/16,21/64,…},{…,11/32,3/8,1/2,1})のように左は1/3より小さい二進有限小数の集合、右は1/3より大きい
二進有限小数の集合として表現されると考えればよい。πなら({3,25/8,201/64,…},{…,101/32,51/16,13/4,7/2,4})のようにすればよい。直感的にはn段階で2^(n+1)-1個の
超現実数が出来るのでω段階では2^(ω+1)-1=2^ω個、つまり連続体濃度だけの超現実数が出来そうであり、いかにも実数が構成された感じがする。

なおこのようなルールでできたものが標準的な超現実数であるため、例えば(-1,1)や(1,0)は標準的な超現実数にはならない。ただし、==の定義が後にあるような
ものなので、それによって標準的な超現実数と等しい超現実数になる可能性はある(後者は左が右より大きくルール違反になるので超現実数にはならないが)。
実際にはこの==による同値類が超現実数になる。

いわば通常の実数の小数表示が下の方から近似していくのに対して超現実実数はオーバーしたら戻り、また戻り過ぎたら逆向きに進み、という具合に上下から
挟んで近似していくような感じになる。例えば

1/3=0.333……は→(1でオーバー),→←(0.5でまだオーバー),→←←(0.25で小さくなった),→←←→(0.375でオーバー),→←←→←(0.3125で小さくなった),
→←←→←→(0.34375でオーバー)……のようにして表示できる。この場合→←の後ろに←→が無限に繰り返す循環小数表記になる。このような場合は
→←[←→]と表記することにする。分数は有限個の矢印で表記されるか循環小数表記で表される。無理数のこのような表示は循環しない表記になる。
例えばπは→→→→ ←←← → ←← → ←←←←…である。(矢印表記はヤフーで見たものだが、このように集合表記より直感的に見やすいという利点がある)

891 名前:886 mailto:sage [2007/01/18(木) 03:16:50 ]
さて、等号、計算を定義する。
これらも帰納的に定義されていることに注意。

α=(a,A)、β=(b,B)とする。

α==β⇔(α≧β∧α≦β)
α≠β⇔¬(α==β)

加法はα+β=({a+β}∪{α+b} ,{ A+β}∪{α+B})

マイナスは-α=(-A,-a)
ただし-A={-x|x∈A}等

乗法はα*β=({aβ+αb-ab}∪{Aβ+αB-AB },{ aβ+αB-aB}∪{Aβ+αb-Ab})

ただし、計算途中にφが入るときはその計算結果はφとする。

各計算は==による同値類別に対しwell-deffinedである。

とりあえず試してみるとわかるように1+2=3とか3/2*3=9/2とか自然に求まる。
また、α+β=β+αとかα+0=αとか-0=0とか0*α=α*0=0とか1*α=α*1=αとか、期待通りになる。
1/2+1/2だと(1/2,3/2)になるし、3/2*4だと(11/2,13/2)になるが、(1/2,3/2)==(0,φ)=1より1/2+1/2==1だし、(11/2,13/2)==(5,φ)=6より3/2*4==6となる。3*(1/3)==1等も成立する。

一般には(a,A)はa<x<Aを満たす超現実数xのうち、最も早い段階で生ずるものになる(このような超現実数は一意に決まる)。例えば(-1,1)==0,(2,5)==3である。

892 名前:886 mailto:sage [2007/01/18(木) 03:18:09 ]
さて、二進法で0.111…を考えると、これは→←→→→…=→←[→]=({1/2,3/4,7/8,…,((2^n)-1)/(2^n)),…},1)である。また、0.000…は、→←←←…=→[←]=(0,{…,1/(2^(n-1)),…,1/8,1/4,1/2,1})となる。
小数点以下が消しあうので0.111+0.000…=→←+→←=1/2+1/2==1だから0.000…==1-0.111…。よって、もし0.000…≠0が示されれば0.111…≠1が証明される。

ところで、ω段階では実は実数でない次のような超現実数も出来る。
[→]=({1,2,3,…},φ)
これは全ての自然数より大きいので、いわば正の無限大ωである。
このωに0と0.000…をそれぞれかけて結果を比較してみる。
0*ωは積の定義により(φ,φ)=0である。
一方、0.000…*ω=(0,φ)=1になるので、0≠0.000…が、従って、0.111…≠1が証明された。(0.000…=1/ωは正の無限小に相当する。どのような通常の意味での正の実数よりも小さく0より大きい数になる。)


これでこのスレ的には終わりだが、実はω+1段階、ω+2段階、…といくらでも考えることが出来るので、ω+1(=1+ω),ω+2,…,2ω,…(それどころかω-1=({1,2,3,…},ω)やω/2とかも)さらにω^2,…,ω^ω,…と
続けていくことも出来るわけである。もちろん、1/(2ω)とかも作られていく。

以上。

893 名前:132人目の素数さん [2007/01/19(金) 03:28:36 ]
超準解析での1=0.999…の証明と1≠0.999…の証明は?

894 名前:132人目の素数さん mailto:sage [2007/01/19(金) 09:32:24 ]
>>892
0.000…=1/ωというのは正しいの?
おれは0.000…=1/(ω^2,…,ω^ω,…)だと思うが。
そうすると、超現実数上でのε-δ 論法のようなものを使って、
0.000…=0を示すことができるはずだね。



895 名前:132人目の素数さん mailto:sage [2007/01/19(金) 13:18:42 ]
感覚的な話になるけど、超現実数で得られる無限小は
0.000…01 (ω桁目で止まる)
0.000…00…001 (ω^ω桁で止まる)
みたいな感じになるのでは?そうすると、
0.000… (止まらない)
という数については やはり0.000…=0が成り立ってしまうとか。

896 名前:132人目の素数さん [2007/01/19(金) 17:34:09 ]
1=0.9999999999・・・ です。

897 名前:132人目の素数さん mailto:sage [2007/01/19(金) 17:37:05 ]
>>886

でも大小の定義多分間違ってる
0≦0⇔(φ,φ)≦(φ,φ)⇔¬(φ≧(φ,φ))∧¬((φ,φ)≧φ)⇔¬(x∈φ⇒x≧(φ,φ))∧¬((φ,φ)≧φ)
x∈φ⇒x≧(φ,φ)は真だから0≦0が偽になる?(?)

898 名前:132人目の素数さん mailto:sage [2007/01/19(金) 20:51:22 ]
超現実数では、
(10*10*10*・・・)*(0.1*0.1*0.1*・・・)の答えはどうなるのさ?

899 名前:132人目の素数さん mailto:sage [2007/01/19(金) 20:54:52 ]
10*10*10*・・・ なんて続くのは現実数じゃない。
よって命題偽。

900 名前:1−0.9dot=0 mailto:sage [2007/01/19(金) 22:14:04 ]
ところで、超限実数と超現実数は別々ですか?

>>886-892
乙。
付いて逝けとらんが、メモしますた。

901 名前:886 mailto:sage [2007/01/20(土) 01:09:31 ]
>>894
>0.000…=1/ωというのは正しいの?
正しいです。1/ωを小数表示すれば0.000…だから。
ただし、ここではω段階までを前提にしているから任意有限桁以外扱わないということが影響しています。
その先まで考えれば無限桁を扱うか小数表示を諦めるかになると思いますが超現実数で無限桁の数学的な厳密な定義が出来るとは思えないので、
出来ると思うならまずは示してみてください。話はそれからです。自分は後者、つまり、小数表示はこの先は諦めるべきだと思います。

>>897
確認したら定義は正しかったのですが、確かに書いてある通りな気が。ウムム...
今頭が死んだ状態なのでゆっくり眠ってからよく考え直してみます。

>>898
極限操作を定義するのが先では?

>>900
超限順序数と超現実数なら似てはいますが別です。
例えば前者にはないω-1やω/2が超現実数では定義されます。
また、前者ではω+1≠1+ω=ω,ω2≠2ω=ωですが、
後者ではω+1=1+ω,ω2=2ωです。

902 名前:1−0.9dot=0 mailto:sage [2007/01/20(土) 04:51:19 ]
thx!!
しかし流石は数学、早々と分数表示に絞っている。

903 名前:132人目の素数さん mailto:sage [2007/01/24(水) 22:45:41 ]
誰かここの奴らに説教してやってくれ↓
pya.cc/pyaimg/pimg.php?imgid=37550

904 名前:1−0.9dot=0 mailto:sage [2007/01/25(木) 22:13:28 ]
>>903
携帯房の私には書き込めません!!
ここへの誘導とテンプレの掲示
とConway流の提示(>>278-281)、1≠0.9dotなる超現実数体の公理系の構築(>>886-892)
と更に下の文を掲示したかった。


さて 未だにに1−0.9dot=0を認められん人はおるんだろうか?
【∵ 空集合[empty]をφ、無限小[infinitesimal]をεとすると、φ∈0且つε∈0】
まさか…
1−0.9dot≠φというなら分かるが
更に(1−0.9dot≠φ)&(1−0.9dot≠ε)という人までいたりして…。



905 名前:1−0.9dot=0 mailto:sage [2007/01/26(金) 04:44:30 ]
ありゃ?>>904手落ち、補追。
>>845&>>849
>>904>>886-892>>894-902
と下の文を追加。


>>895
空集合[empty]をφ、無限小[infinitesimal]をεとすると、φ∈0且つε∈0
─の為、1−0.9dot=0でおk!!

906 名前:132人目の素数さん mailto:sage [2007/01/26(金) 08:16:38 ]
ところで1=0.999999999999・・・じゃないって言う人は

(9/10)+(9/100)+(9/1000)+・・・
つまり9/(10^n)の級数の∞の極限は1じゃないって思ってるの?
それともこの極限と0.999999999・・・は違うって主張してるの?

907 名前:132人目の素数さん mailto:sage [2007/01/28(日) 03:21:09 ]
ってかWikiの0.999...の項なんだけど
収束定理で|r|<1ならば0.999..=1とやってるけど、これって矛盾してない?
工学系の人間なんで詳しくないんだけど的外れ?
ttp://ja.wikipedia.org/wiki/0.999...%E3%81%8C1%E3%81%AB%E7%AD%89%E3%81%97%E3%81%84%E3%81%93%E3%81%A8%E3%81%AE%E8%A8%BC%E6%98%8E

908 名前:132人目の素数さん mailto:sage [2007/01/28(日) 04:13:12 ]
>収束定理で|r|<1ならば0.999..=1とやってるけど、
「|r|<1ならば0.999..=1」などと主張している部分はどこにも見当たらない。正確に抜粋してくれ。

909 名前:1−0.9dot=0 mailto:sage [2007/01/28(日) 13:33:17 ]
>>907
>>908が慎重に受けているが
極限を思い出すべし
といってみるテスト。
儂が見てみようにも
携帯房なのでそれ、読めんし。

910 名前:132人目の素数さん [2007/01/28(日) 15:37:33 ]
> 超現実数で得られる無限小は
0.000…01 (ω桁目で止まる)
0.000…00…001 (ω^ω桁で止まる)
みたいな感じになるのでは?

─1*10^(ーω)、無限小

に1*^10(ーω^ω)、更に高位の無限小

> そうすると、
0.000… (止まらない)
という数については やはり0.000…=0が成り立ってしまうとか。

─そんな数は…仮に考えると
桁数は 空集合(以下:=φ)の逆数集合 と(勝手に)考える。
つまり1*10^(1/φ)となって
ゲーデル的決定不能性と言うまでもなく
#DIV/0!的不能。

結局、lim[x→φ]xとだけしか言い切れず終いになると思う。

つまり1−0.9dotはφか否かとなると
分かり得ない となるんと違うか。
無限小の逆数を∞となるとする事+更にまた一つ訳が違う事情。

911 名前:05001014289445_me mailto:sage [2007/01/28(日) 15:42:20 ]
>>910

912 名前:1−0.9dot=0 mailto:sage [2007/01/28(日) 15:48:34 ]
>>910を書き直し。ちゃんと>>911の節穴さんで消えてますか?

本題へ。
>>895
> 超現実数で得られる無限小は
0.000…01 (ω桁目で止まる)
0.000…00…001 (ω^ω桁で止まる)
みたいな感じになるのでは?

─1*10^(ーω)、無限小

に1*^10(ーω^ω)、更に高位の無限小

> そうすると、
0.000… (止まらない)
という数については やはり0.000…=0が成り立ってしまうとか。

─そんな数は…仮に考えると
桁数は 空集合(以下:=φ)の逆数集合 と(勝手に)考える。
つまり1*10^(1/φ)となって
ゲーデル的決定不能性と言うまでもなく
#DIV/0!的不能。

結局、lim[x→φ]xとだけしか言い切れず終いになると思う。

つまり1−0.9dotはφか否かとなると
分かり得ない となるんと違うか。
無限小の逆数を∞となるとする事 + 更にまた一つ訳が違う事情。
…と考えてみるテスト。

913 名前:132人目の素数さん mailto:sage [2007/01/28(日) 16:02:15 ]
0.999・・・=1を収束で証明すると1は収束値となる
すると0.000・・・=0もまた収束値である

よって1/0は±∞

914 名前:132人目の素数さん mailto:sage [2007/01/28(日) 16:30:05 ]
>0.000…01 (ω桁目で止まる)
>0.000…00…001 (ω^ω桁で止まる)
>みたいな感じになるのでは?

みたいなどと感覚で言われても数学にはならないから。
ちゃんと定義してみたら?



915 名前:1−0.9dot=0 mailto:sage [2007/01/28(日) 18:03:21 ]
>>914
だから>>912では>>895氏のレスを意訳した上でレスしたわけだがのう。
儂も素人だからのう。

少数点第ω位以外0で当の桁が1の数と
少数点第ω^ω位以外0で当の桁が1の数。

916 名前:132人目の素数さん mailto:sage [2007/01/28(日) 18:12:07 ]
全然定義になっていない。
具体的な数に対してどう小数展開を求めるの?
ω桁のみが1で他は0の数の10倍はいくつ?
せめてこれぐらいは具体的に答えてくれ。

917 名前:132人目の素数さん mailto:sage [2007/01/28(日) 18:14:00 ]
>桁数は 空集合(以下:=φ)の逆数集合 と(勝手に)考える。
逆数集合って何?厳密な定義ヨロシク

918 名前:PCで1−0.9dot=0 mailto:sage [2007/01/28(日) 20:32:16 ]
ああ!!>>910が消えてない!!あの話は釣りかwww
>>916-917
あ。えーと10ω=ω10=ω…
駄目だこりゃあー。
逆数集合も……

919 名前:132人目の素数さん mailto:sage [2007/01/28(日) 21:36:22 ]
>>918
それで?逆数集合って何?厳密な定義ヨロシク。

920 名前:132人目の素数さん mailto:sage [2007/01/29(月) 10:20:31 ]
>>886
乙。しかしなんか怪しい。

n段階に到達して初めてnという数が定義されている。
もっと具体的に言うと、超現実数ωはω段階にならなければ作ることはできない。

どんなにn回(有限回)繰り返しても超現実数ωという数を作ることはできない
と思うがいかがでしょう?

921 名前:132人目の素数さん mailto:sage [2007/01/29(月) 13:34:54 ]
>>920
帰納法は前提になるだろうね。超限の方の。
実数は連続体濃度なので有限回で出来たら不思議だし。

922 名前::PCで1−0.9dot=0 mailto:sage [2007/02/01(木) 20:04:08 ]
先ず始めに貴殿に撃沈されますた宣言。
駄目元でググッた。
www.google.co.jp/search?hl=ja&q=%E9%80%86%E6%95%B0%E9%9B%86%E5%90%88&lr=
…全然わかりましぇん。

只単に「(個数0)の逆数」と表現したかったんだが、
脳内勝手表現になってしまってゴメス(´・ω・`)

1/[|0|] とか 1/[ABS 0] とか 1/int 0 とでも表せばよかっただろうか?
それとも単純に1/φで十分だっただろうか?

923 名前:132人目の素数さん mailto:sage [2007/02/02(金) 00:14:57 ]
>>922
>それとも単純に1/φで十分だっただろうか?
だ・か・ら、φは空集合だろ?空集合に対して「1/φ」ってどういう定義なの?いい加減にしろクズ!

924 名前:132人目の素数さん mailto:sage [2007/02/02(金) 00:20:21 ]
>只単に「(個数0)の逆数」と表現したかったんだが
意味不明。

>1/[|0|] とか 1/[ABS 0] とか 1/int 0 とでも表せばよかっただろうか?
意味不明。

 全 部 意 味 不 明 。



925 名前:132人目の素数さん [2007/02/05(月) 07:02:52 ]
upload.wikimedia.org/wikipedia/commons/b/b8/999_Perspective.png

926 名前:132人目の素数さん mailto:sage [2007/02/05(月) 09:24:09 ]
>>925
それだけ並んでたら 1 になりそうな気もするなw

927 名前:1−0.9dot=0 mailto:sage [2007/02/07(水) 20:45:06 ]
商集合の概念も分からん内に、
どっかでみた逆数集合の概念を勝手に解釈してますた。
ゴメス(´・ω・`)
クズ呼ばわりまでされてしまいますた。

ググッてもよく分からん結果しか出てこなかったし。

せめて提示にいたりたい…。

928 名前:1−0.9dot=0 mailto:sage [2007/02/13(火) 00:48:07 ]
あった!

search.ieiece.org/bin/summary.php?id=j73ーa_7_1196&category=A&year=1990&lang=J&abst=

ここの「逆数集合」ってどんな意味だか…?

929 名前:1−0.9dot=0 mailto:sage [2007/02/13(火) 01:02:19 ]
失敗。またあした。

930 名前:1−0.9dot=0 mailto:sage [2007/02/13(火) 22:02:50 ]
今度こそ(但、アドレス更新頻繁みたい)。

適応信号処理における跳躍アルゴリズム
search.ieice.org/bin/summary.php?id=j73-a_7_1207&category=A&year=1990&lang=J&abst=&auth=1

931 名前:1−0.9dot=0 mailto:sage [2007/02/13(火) 22:13:54 ]
あらまし:
本論文は、LMSアルゴリズムの適応更新において、

…中略

ある離散値集合、すなわち入力信号の相関行列の固有値の逆数集合によって与えられることを示し、
以下略

ここに提示。…電子情報通信学会論文詩??

趙 晋輝、エクトル ペレス、辻井 重男


はあ、用事済んだ!!

932 名前:1−0.9dot=0 [2007/02/16(金) 19:23:35 ]
>>917>>919>>923-924
>>930-931の中の「逆数集合」の意味知らん?

933 名前:132人目の素数さん mailto:sage [2007/02/16(金) 20:48:52 ]
>>932
「入力信号の相関行列の固有値の逆数集合」
=「入力信号の相関行列の各固有値の逆数を集めた集合」
={1/λ|λは入力信号の相関行列の固有値}

で?この定義に従うと、空集合φに対して「1/φ」ってどういう意味なの?

>>927
商集合の概念も分からんうちに実数論について語る”知ったかぶり”の ク ズ がオマエだ。

934 名前:132人目の素数さん mailto:sage [2007/02/16(金) 21:54:30 ]
なんかまた煽りスレになってんな

>>933
じゃあ、毒を吐き散らすあんたは危険物ゴミだな。
取り扱い注意ww



935 名前:132人目の素数さん mailto:sage [2007/02/16(金) 21:55:59 ]
数学についてド素人なのでまったく見当違いな考えかも知れませんけれど,
この問題って普通 (過去ログ読んだ限りでは) 実数の完備性持ち出してきて
説得しようと試みているようですけれど,これって完全に有理数体上でのみ
問題を定式化することってできないんですかね?

一応,有理数体上でも循環小数に限るならば,それを定義して,
位相,極限,極限に関する和・積を定式化して
論じることができるような気がするんですが,そういう議論って既出なんでしょうか?

936 名前:132人目の素数さん [2007/02/16(金) 22:22:40 ]
過去ログにあるしテンプレにもあるように有理数体で証明可能。

937 名前:132人目の素数さん mailto:sage [2007/02/17(土) 00:12:18 ]
>>936
あ,やっぱりできるんですか.見落としてました.
もう一回過去ログ漁ってきます.ありがとうございました.

938 名前:132人目の素数さん [2007/02/17(土) 06:41:02 ]
>>936←こう言うレスする奴がいるから、このスレいつまでたっても終わらない。

939 名前:132人目の素数さん [2007/02/17(土) 08:44:06 ]
まあ放置でいいのかもしれないが。

940 名前:既出内容的独り言 mailto:sage [2007/02/18(日) 01:09:00 ]
二進法だと、スレ題意はゼノンのパラドクスの二分法と同じ
但しゼノンの主張は二進表記で1≠0.111…
つまりゼノンの主張は十進法の1≠0.999…

941 名前:132人目の素数さん mailto:sage [2007/02/28(水) 06:13:25 ]
>>912&>>917-919&>>922-924&>>927-933
ただ単に1/0でいいじゃんか。
1/0乗する意味も分からんが。

942 名前:132人目の素数さん [2007/02/28(水) 22:52:29 ]
数Vを今勉強してるんですが教科書に
0.999…=1が書いてありました

Cの無限等比級数を使ってありました

943 名前:132人目の素数さん mailto:sage [2007/03/01(木) 02:28:47 ]
>>942
いち結論。
こんなんもある

>>278-281

944 名前:1−0.9dot=0 mailto:sage [2007/03/03(土) 05:15:33 ]
>>941
>ただ単に1/0でいいじゃんか

仰る通り!
>>922中の
[|0|]
[ABS 0]
int 0は
無限小量、超現実数量
さえも排除し、完全な空元である事を強調した0を表現したかった
…のですが、荒れた事から察するに余計な事だったみたいです。



945 名前:132人目の素数さん mailto:sage [2007/03/03(土) 14:59:54 ]
初歩的な質問なんだけどいいかな?
0.999・・・の「9をどこまでも増やす」と「9を無限に増やす」
を同一視するのは間違いなんだよな?

946 名前:132人目の素数さん mailto:sage [2007/03/04(日) 07:00:51 ]
>>945
「無限に増やす」が極限での意味で「どこまでも」も極限での意味なら両者同義。

947 名前:132人目の素数さん mailto:sage [2007/03/11(日) 21:18:21 ]
262

948 名前:132人目の素数さん [2007/03/14(水) 17:55:01 ]
AGE

949 名前:132人目の素数さん mailto:sage [2007/03/16(金) 01:41:43 ]
>>944
いや、、、1/0乗自体が恥。

950 名前:132人目の素数さん [2007/03/22(木) 23:59:28 ]
単刀直入に聞くけど、
テンプレのCってどっか問題ある?
1=0.999…を証明しようと思って
担任(高校)に説明したら鼻で笑われたんだけど。

951 名前:132人目の素数さん [2007/03/23(金) 00:32:21 ]
>>950
QA5〜6 の「前提条件」をしっかり確認していないから。

だいたい、その数学教師も大人げない。高校生ならその前提条件の「実数の連続性」なんて
分かるはずもないだろうしね。

まあ、反発させてもっと頑張らせようとする策略なのかも知れないがw



952 名前:132人目の素数さん mailto:sage [2007/03/23(金) 00:39:32 ]
高校の担任⇒数学教師
なのか?

953 名前:132人目の素数さん [2007/03/23(金) 02:01:02 ]
差は0.00000・・・001だからな。イコールな訳ねーだろアフォ

954 名前:132人目の素数さん mailto:sage [2007/03/23(金) 02:02:05 ]
いつもの無限ループか。

>>953
その1は何桁目?



955 名前:132人目の素数さん [2007/03/23(金) 02:49:51 ]
>>954
一番最後の桁だ
ゼロじゃねーんだからイコールにすんな

956 名前:132人目の素数さん mailto:sage [2007/03/23(金) 02:59:21 ]
最後って?
限りが無いから無限なんだろ?

957 名前:132人目の素数さん [2007/03/23(金) 03:12:38 ]
>>956
ハァ?途中に無限に続くってのを入れてんだろカス
そういうのを揚げ足を取るって言うんだぜ?

958 名前:132人目の素数さん [2007/03/23(金) 03:17:31 ]
数直線で考えりゃ簡単だろ。
下一桁増えるごとに、差が1/10になり続けるだけなんだからくっ付く訳ねー。1=0.999…なんてアフォもいいとこ。

959 名前:現役数学科生 ◆kqCNtKmdaM [2007/03/23(金) 03:19:31 ]
>>953
君は間違っているよ。
だいたい、差は0.00000・・・001だって言うけど、厳密性に欠けるし、「・・・」は何を意味するの?
数学で言う「・・・」はきちんと説明できなければ使ってはならないんだよ。

960 名前:132人目の素数さん [2007/03/23(金) 03:27:19 ]
>>959
じゃあ0.00000・・・001を数学的に表記しろよ。
0.00000・・・001は存在するだろ。
ならお前が数学で表してみろ

961 名前:42 ◆IBzyiVG4Vw [2007/03/23(金) 03:30:48 ]
ちょっと気になったので一言。
>>953
その1は何桁目?
>>954
一番最後の桁だ
ゼロじゃねーんだからイコールにすんな
>>956
最後って?
限りが無いから無限なんだろ?
>>956
ハァ?途中に無限に続くってのを入れてんだろカス
そういうのを揚げ足を取るって言うんだぜ? ・・・@

数直線で考えりゃ簡単だろ。
下一桁増えるごとに、差が1/10になり続けるだけなんだからくっ付く訳ねー。1=0.999…なんてアフォもいいとこ。・・・A

同一人物なのかは分からないけど、@・Aはおかしいよね。

@人に意見するなら、自分の数学の力をみなさい。「揚げ足をとる。
見ているこちらが恥ずかしい。揚げ足を取られたくなければ、それに反論できる力をつけなよ。
はっきりいって、かっこわるすぎる。いかにも表面的な学習すら出来ていない高校生のような書き方。
A「下一桁増えるごとに、差が1/10になり続けるだけなんだからくっ付く訳ねー。」←この書き方で、数式を理解していないのが分かる。
だいたい、「0.9」のポイントを0.999999999999999・・・(無限に続く)と勘違いしている時点で数学を語る資格はない。

962 名前:現役数学科生 ◆IBzyiVG4Vw [2007/03/23(金) 03:35:21 ]
>>961は僕。
>>960
あのさぁ、まず、エチケットとして、言葉使いを丁寧にしなよ。
あと、0.00000・・・001を数学的に表記しろよ。っていうけど、じゃあ、君は出来るの?
出来ないんでしょう?だから、人に頼むんでしょう?
今までの書き方からして、君がこれを書けるとは思えないんだけど。。。

というと、「お前が書けないんだろ」とか言うんだろうね。

深く議論したいなら、まず、解答を示してみなよ。悔しかったら。
書けないのなら、ここに来る資格はないし、君のためにも。来ない方が良い。

963 名前:132人目の素数さん mailto:sage [2007/03/23(金) 03:39:16 ]
>>現役数学科生
大学生VS糞厨房wwwww
相手にすんなて

964 名前:ラフィーナ ◆4uOfhyZmKc mailto:sage [2007/03/23(金) 03:43:53 ]
>>現役数学科生さん
アキレスと亀、12時ちょうどにお弁当を食べる大工さんの話を知っていますか?
>>958の様な発言をした生徒に対して、これを使って極限の概念を話しても大丈夫でしょうか?



965 名前:132人目の素数さん [2007/03/23(金) 03:45:14 ]
>0.999999999999999・・・(無限に続く)と勘違いしている時点で数学を語る資格はない。

は?じゃあスレタイの0.999・・・が無限に続かねーなら、イコール1になる訳もねーじゃんw

でさ、なにムキになってんだ?お前w精神年齢ガキだな。分からねーならすっこんでろw

966 名前:現役数学科生 ◆Op1e.m5muw [2007/03/23(金) 03:53:00 ]
すみません。トリップが面倒になったので他の掲示板で使っていたトリップにしました。

>>ラフィーナさん
こんばんは。
>これを使って極限の概念を話しても大丈夫でしょうか?
いいと思います。適例だと思います。
(個人的な話ですが、他の掲示板で貴方の書き込みを可愛らしいと言ったのは僕です。。。)

>>965
>スレタイの0.999・・・が無限に続かねーなら、イコール1になる訳もねーじゃんw
完全に勘違いしていますね。
>お前w精神年齢ガキだな。
どっちが子供でしょうか?他の人が見たら貴方の方が子供だと思いますよ。
もう夜遅いですから、寝たらどうでしょう?
高級な議論は、僕たちでやっておきますので。




967 名前:132人目の素数さん [2007/03/23(金) 03:53:15 ]
0.9999…… = 1
だと思ってた俺はカス?

x = 0.9999……とおいて
10x = 9.9999……
9x = 9
x = 1
ってのは無し?

ってか無限級数でなんとかなるんだっけ…

968 名前:132人目の素数さん [2007/03/23(金) 03:58:21 ]
回答テンプレ読んだ
どうやら>>967は初等証明になるらしいな。

969 名前:現役数学科生 ◆Op1e.m5muw [2007/03/23(金) 04:00:19 ]
>>967
>0.9999…… = 1
だと思ってた俺はカス?
いいえ。普通ですよ。
詳しく知りたいのであれば、理由を書きますが>>965のような無礼な名無しと見分けがつかないので、トリップをつけてください。

970 名前:132人目の素数さん [2007/03/23(金) 04:02:03 ]
>>現役数学科生
967じゃないが教えてくれ。

971 名前:ラフィーナ ◆4uOfhyZmKc mailto:sage [2007/03/23(金) 04:02:16 ]
>>現役数学科生さん
ありがとうございました。。。。(〃_ _)σ
これからもよろしくお願いします☆

972 名前:967 [2007/03/23(金) 04:04:59 ]
>>969
いろいろ認めた上でなら、初等証明が有効ってとこがなんかレベルの差を感じます…俺も早く大学の数学について行けるレベルになりたい笑

973 名前:132人目の素数さん [2007/03/23(金) 04:08:07 ]
>>967
>x = 0.9999……とおいて
>10x = 9.9999……

この時点で一桁ずれてんだろwバカはすっこんでろw


974 名前:現役数学科生 ◆Op1e.m5muw [2007/03/23(金) 04:10:03 ]
>>970
ちょっと待ってください。
>>971
はい。こちらこそ。
>>972
そんなに悲観しなくてもいいかと。すぐに出来るようになりますよ。
色々認めたら、とありますが、そもそも数学なんて深入りすると哲学と似ているのですから。
例としては
‘1’は数か?なんてね。
あと、0.99999999999999・・・も永遠と続いて行く数と見なすと、そもそも
x = 0.9999……とおいて
10x = 9.9999……
↑この10倍すら認められなくなりますよ。



975 名前:967 [2007/03/23(金) 04:11:47 ]
>>973
まさかそこを突っ込まれるとは…

桁もなにも、循環小数のつもりで書いたので。
なにも特別なことではないですが。

976 名前:現役数学科生 ◆Op1e.m5muw [2007/03/23(金) 04:14:12 ]
>>967さんへの擁護

>>965>>973
>x = 0.9999……とおいて
>10x = 9.9999……
この時点で一桁ずれてんだろwバカはすっこんでろw

一桁ずれると勘違いしている方が馬鹿。
毎回のことで、みなさんご承知の通りですが、‘解答も示さずに’人をけなす者(=973)に数学を語る資格などない。







[ 続きを読む ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<351KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef