[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 08/14 23:29 / Filesize : 225 KB / Number-of Response : 952
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

面白い問題おしえて〜な 十二問目



760 名前:132人目の素数さん mailto:sage [2007/02/22(木) 17:54:39 ]
>>746後半

(A∪B=Nであること)
任意のk∈Nに対し、k∈Aまたはk∈Bが成り立つことを示せばよい。k∈Aのときは それでよいから、
k∈/Aのときを考える。iα<kを満たすi∈Nのうち最大のものをnとすれば、nα<k,k+1≦(n+1)α
が成り立つ(k+1>(n+1)αならばk∈Aとなってしまう)。この不等式をαで割ってn<k/α,
(k+1)/α≦n+1となる。1/α+1/β=1より、n<k(1−1/β),(k+1)(1−1/β)≦n+1 となる。
これを変形してk<(k−n)β≦(k+1) となり、βが無理数であることからk<(k−n)β<(k+1)
となり、よって[(k−n)β]=kとなる。すなわちk∈Bとなる(α>1なのでk−n>0であることに注意)。

(A∩B=φであること)
k=[nα]=[mβ]とすると、k<nα<k+1,k<mβ<k+1 が成り立つ(α,βは無理数だから等号は入らない)。
よってk/α<n<(k+1)/α,k/β<m<(k+1)/β が成り立つ。片々足してk<n+m<k+1となるが、k,n+m,k+1は
全て自然数だから矛盾。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<225KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef