[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 08/14 23:29 / Filesize : 225 KB / Number-of Response : 952
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

面白い問題おしえて〜な 十二問目



441 名前:380 mailto:sage [2006/11/13(月) 05:14:39 ]
f(x)=Π[i=1〜n](x^1+x^2+…+x^ki)=Σ[a∈A]x^(a1+a2+…+an)とおく。ただし
A={a:{1,2,…,n}→N|1≦ai≦ki for i=1〜n}とおいた。これをさらに変形して、
Σ[a∈A]x^(a1+a2+…+an)=Σ[r=0〜d−1]Σ[a∈A, a1+…+an≡r (mod d)]x^(a1+a2+…+an)
=Σ[r=0〜d−1]Tr(x)とする。ただしTr(x)=Σ[a∈A, a1+…+an≡r (mod d)]x^(a1+a2+…+an)と
おいた。ω=e^(2πi/d)とするとき、k∈Zに対してTr(ω^k)=Σ[a∈A, a1+…+an≡r (mod d)]ω^{k(a1+a2+…+an)}
=Σ[a∈A, a1+…+an≡r (mod d)]ω^{kr}=ω^(kr)Pr となる。ただしPr=Σ[a∈A, a1+…+an≡r (mod d)]1
=「a1+…+an≡r (mod d)が成り立つa∈Aの個数」とおいた。このとき
f(ω^k)=Σ[r=0〜d−1]Tr(ω^k)=Σ[r=0〜d−1]ω^(kr)Pr …*
となるので、k=0,1,…,d−1を*に代入し、得られたd個の式を全て足し合わせることでΣ[k=0〜d−1]f(ω^k)=dP0と
なるので、P0=Σ[k=0〜d−1]f(ω^k)/dとなる。P0=「a1+…+an≡0 (mod d)が成り立つa∈Aの個数」であり、これが
求める個数であった。以上より、Σ[k=0〜d−1]f(ω^k)/d が答えとなる。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<225KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef