[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 04/03 03:29 / Filesize : 263 KB / Number-of Response : 916
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

こんな確率求めてみたい その1/4



677 名前:132人目の素数さん mailto:sage [2008/04/24(木) 14:11:59 ]
封筒のパラドクスを簡単に解説してあげよう。
まず、封筒A、封筒Bに入ってる金額を確率変数A、Bであらわすことにする。
すると恒等式A = (A/B)*BとB=(B/A)*Aが成り立つ。
A/Bの期待値はE[A/B]=(1/2)*(1/2)+2*(1/2)=5/4となる。
同様にE[B/A]=5/4となる。
ここで、
E[A]=E[A/B]*E[B]=E[A/B]*E[B/A]*E[A]=(25/16)*E[A]
とすると矛盾

となる。

この論法の間違いは、確率変数の恒等式A=(A/B)*Bから
E[A]=E[A/B]*E[B]が成り立つとしてしまった点にある。
これは一般には成り立たない。
確率論の習い始めによくやる間違いさ。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<263KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef