[表示 : 全て 最新50 1-99 101- 201- 301- 401- 2chのread.cgiへ]
Update time : 04/28 01:13 / Filesize : 108 KB / Number-of Response : 437
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

フィボナッチ・リュカ数列の定理を並べるスレ



1 名前:132人目の素数さん [04/01/12 23:45]
以下
フィボナッチ数列
F(1)=1,F(2)=1,F(n+2)=F(n+1)+F(n)
リュカ数列
L(1)=1,L(2)=2,L(n+2)=L(n+1)+L(n)
としましょう。マニアックなのでも結構です。

244 名前:風あざみ [04/12/26 23:42:53]
命題
P,Qを以下のような整数とする。
(P,Q)=1かつ数列U_nはU_0=0、U_1=1、U_(n+2)=PU_(n+1)-QU_nを取ると
n→∞ならば|U_n|→∞となる。
このときM≡1 (mod K)となるパラメーター(P,Q)の強Lucas擬素数が無数に存在すること。
(強Lucas擬素数の定義はRibenboimの「素数の世界」のP91〜P92を参照ください。)

証明ではRibenboimの「素数の世界」のP40〜P49のIV1〜IV30とヤコビの記号の基本性質
LとNを正の奇数とすると
(-1/L)=(-1)^{(L-1)/2}、(2/L)=(-1)^{(L^2-1)/8}、(N/L)=(L/N)(-1)^({(N-1)/2}{(L-1)/2})
となることを既知とする。

245 名前:風あざみ [04/12/26 23:43:25]
準備として、補題を二つ示す。

補題1
任意のmをとる。
n≧γ(m)なる任意の自然数nに対して、U_{n+θ(m)}≡U_(n) (mod m)
となるような0以上の整数、θ(m),γ(m)が存在する。
特に、(m,Q)=1のときは、γ(m)=0となる。

証明
{U_0,U_1}、{U_1,U_2}、…、{U_(m^2),U_(m^2+1)}とm^2+1個の組を考える。
|Z/mZ×Z/mZ|=m^2だから、U_i≡U_j (mod m)、U_(i+1)≡U_(j+1) (mod m)
となるような自然数、iとj(0≦i<j≦m^2)が存在する。
U_(j+2)≡PU_(j+1)-QU_j≡PU_(i+1)-QU_i≡U_(i+2) (mod m)
同様に、U_(j+3)≡U_(i+3)、…、U_(j+k)≡U_(i+k) (mod m)となる。
よって、n≧iなる自然数nに対して、U_(n+j-i)≡U_(n-i+j)≡U_n (mod m)となる。
特に(m,Q)=1のとき
QU_(j-1)≡PU_j-U_(j+1)≡PU_i-U_(i+1)≡QU_(i-1) (mod m)
(Q,m)=1よりU_(j-1)≡U_(i-1) (mod m)
同様に、U_(j-2)≡U_(i-2) (mod m)、…、U_(j-k)≡U_(i-k) (mod m)
したがって、任意の整数n≧0に対して、U_(n+j-i)≡U_(n-i+j)≡U_n (mod m)となる。

(m,Q)=1のときγ(m)=0、θ(m)=j-i
そうでないときγ(m)=i、θ(m)=j-iとおけばよい。

証明終

246 名前:風あざみ [04/12/26 23:44:47]
補題2
mを任意の自然数とする。
以下のような0以上の整数α(m)とβ(m)が存在する。
s≧β(m)、t≡1 (mod α(m))ならば、U_(st)/U_s≡1 (mod m)となります。
(IV15よりU_(st)/U_sは整数である)

証明
m=Π[pはQを割り切る]{p^a}*Π[qはQを割り切れない]{q^b}と書く。
以下mの素因数のうち、Qの素因数であるものをpそうでないものをqとする。

補題1よりn≧γ(p^a)なる任意のnに対してU_{n+θ(p^a)}≡U_n (mod p^a)
γ(p^a)のうち、最大になるものをw、θ(p^a)たちの最小公倍数をvと置くと
n≧wなる任意のnに対して、U_(n+v)≡U_n (mod p^a)
したがって、g≡1 (mod v)となる自然数gに対して、U_(gw)≡U_w (mod p^a)となる。

U_gのqの指数cを取る。
補題1より任意のnに対して、U_(n+θ{p^(b+c)})≡U_n (mod q^(b+c))
θ{p^(b+c)}たちの最小公倍数をv’とすると、U_(n+v’)≡U_n (mod q^(b+c))
よって、g’≡1なる任意の自然数g’に対して、U_(g’w)≡U_w (mod q^(b+c))

vとv’の最小公倍数をα(m)、wをβ(m)とする。
sをs≧β(m)なる整数、tをt≡1 (mod α(m))となる自然数とする。
U_s*{U_(st)/U_s}≡U_s (mod p^a)
(P,Q)=1だからIV24より(U_s,Q)=1だからU_sとpは互いに素
よってU_(st)/U_s≡1 (mod p^a)

U_s*{U_(st)/U_s}U_(st)≡U_s (mod q^(b+c))
{(U_s)/q^c}{U_(st)/U_s}≡U_s/q^c (mod q^b)
U_s/q^cとqは互いに素だから、U_(st)/U_s≡1 (mod q^b)

よってU_(st)/U_s≡1 (mod m)となります。
証明終

247 名前:風あざみ [04/12/26 23:49:42]
さて命題を示す。
Kを任意の整数とする。
DをD=±(2^e)*h(hは奇数)と書く
sやtを以下の性質を満たす素数とする。
s≡1 (mod 8h)、s≧β(8hf)
t≡1 (mod α(8hK)*(s-1))、U_sはtで割り切れない。
tはsに対して十分大きいものとする。
U_(st)/U_sは求める強Lucas擬素数である。

証明
M=U_(st)/U_sとおく。
補題2よりM≡1 (mod 8hK) したがって、(D,M)=1となる。
(D/M)=(±1/M)(2/M)^e(h/M)=(M/h)=1
同様に(D/s)=(D/t)=1となるから
よってIV30より
M*U_s=U_(st)≡U_s (mod t)
U_sとtは互いに素だから、M≡1 (mod t)
(P,Q)=1だからIV30よりM≡M*U_s=U_(st)≡U_s≡1 (mod s)
よってM≡1≡(D/M) (mod st)

U_t|U_(st)=M*U_s
IV26よりU_sとU_tは互いに素だからU_t|Mとなる。
よってMは合成数である。

M=2^r*d+(D/M)=2^r*d+1(ただしrは正の整数かつdは奇数)とかけるので、d≡0 (mod st)
U_(st)≡0 (mod M)だからU_d≡0 (mod M)となる。

よってM= U_(st)/U_sは求める強Lucas擬素数である。
条件を満たす素数sとtは等差数列におけるDirichletの素数定理より無数に存在することがわかる。
よって、条件を満たすMも無数にある。

証明終

248 名前:風あざみ [04/12/26 23:55:37]
さて命題を示す。
Kを任意の整数とする。
DをD=±(2^e)*h(hは奇数)と書く
sやtを以下の性質を満たす素数とする。
s≡1 (mod 8h)、s≧β(8hK)
t≡1 (mod α(8hK)*(s-1))、U_sはtで割り切れない。
tはsに対して十分大きいものとする。
U_(st)/U_sは求める強Lucas擬素数である。

証明
M=U_(st)/U_sとおく。
補題2よりM≡1 (mod 8hK) したがって、(D,M)=1となる。
(D/M)=(±1/M)(2/M)^e(h/M)=(M/h)=1
同様に(D/s)=(D/t)=1となるから
よってIV30より
M*U_s=U_(st)≡U_s (mod t)
U_sとtは互いに素だから、M≡1 (mod t)
(P,Q)=1だからIV30よりM≡M*U_s=U_(st)≡U_s≡1 (mod s)
よってM≡1≡(D/M) (mod st)

U_t|U_(st)=M*U_s
IV26よりU_sとU_tは互いに素だからU_t|Mとなる。
よってMは合成数である。

M=2^r*d+(D/M)=2^r*d+1(ただしrは正の整数かつdは奇数)とかけるので、d≡0 (mod st)
U_(st)≡0 (mod M)だからU_d≡0 (mod M)となる。

よってM= U_(st)/U_sは求める強Lucas擬素数である。
条件を満たす素数sとtは等差数列におけるDirichletの素数定理より無数に存在することがわかる。
よって、条件を満たすMも無数にある。

証明終

249 名前:風あざみ [04/12/27 00:16:01]
>>246
> g’≡1なる任意の自然数g’に対して、U_(g’w)≡U_w (mod q^(b+c))

g’≡1 (mod v')なる任意の自然数g’に対して、U_(g’w)≡U_w (mod q^(b+c))
だな。






[ 続きを読む ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<108KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef