- 1 名前:132人目の素数さん [02/09/15 18:38]
- をどんどんあげていきましょう♪
/π\ │ ( ´∀`) │ ( つ/ │ lim (・∀・) = (゚∀゚) | | | │ ・→゜ (__)_) │___________________________________
- 2 名前:132人目の素数さん [02/09/15 18:44]
- 2げっちゅ♪
- 3 名前:132人目の素数さん mailto:sage [02/09/15 18:58]
- ストークスの定理…
いまだにちゃんと理解できん。。。
- 4 名前:132人目の素数さん mailto:sage [02/09/15 19:17]
- もちろん重積分の変数変換でしょー。
- 5 名前:132人目の素数さん mailto:sage [02/09/15 19:22]
- ストークスの定理の証明の本質的なところは重積分の変数変換だったりする
- 6 名前:132人目の素数さん mailto:sage [02/09/15 19:34]
- ケコーソ?
- 7 名前:132人目の素数さん [02/09/15 20:01]
- 最大値最小値の定理
- 8 名前:132人目の素数さん [02/09/15 20:04]
- ビブソ
- 9 名前:132人目の素数さん mailto:sage [02/09/15 20:14]
- Jordanの定理ってどこで読める?
みんなムズイとしか言わん
- 10 名前:132人目の素数さん mailto:sage [02/09/15 22:02]
- P≠NP
- 11 名前:132人目の素数さん [02/09/15 22:15]
- >>10
P=NPが成り立つことは山口氏によって証明されています。
- 12 名前:132人目の素数さん mailto:sage [02/09/15 22:26]
- >>11
(゚听)ツマンネ P≠NPと見ると脊椎反射で山口ネタに持って行く奴は 山口よりうざい
- 13 名前:132人目の素数さん [02/09/16 01:59]
- 加法定理
証明はできるけど 定理のシンプルさに対して かなり面倒。
- 14 名前:132人目の素数さん [02/09/16 02:10]
- 中間値の定理
- 15 名前:132人目の素数さん [02/09/16 19:42]
- 【定理】
4−∠=1
- 16 名前:132人目の素数さん [02/09/16 19:51]
- 8-3=*3 ただし*3は3のdualをあらわす。
- 17 名前:Z武は伊達じゃない! mailto:sage [02/09/17 15:00]
- 完全性定理
- 18 名前:132人目の素数さん mailto:sage [02/09/24 16:46]
- 大数の法則。 難しいってどれくらいの事をさすのか解らぬ。
- 19 名前:132人目の素数さん [02/10/29 19:21]
- ジョルダンの閉曲線定理
- 20 名前:132人目の素数さん [02/10/30 04:44]
- 代数学の基本定理
- 21 名前:132人目の素数さん mailto:sage [02/10/30 05:06]
- 難しいってわけじゃないけども‥
直角三角形で三平方の定理が成り立つ(必要条件)ことは ほとんどのひとが知っているが 辺の比がそうであれば直角三角形(十分条件)であることを 知っている人は意外に少ない。 その証明となるとさらに‥
- 22 名前:132人目の素数さん mailto:sage [02/10/30 07:07]
- R^2とR^3が同相でないこと
- 23 名前:132人目の素数さん mailto:sage [02/10/30 07:53]
- 1+1=2
- 24 名前:132人目の素数さん mailto:sage [02/10/30 11:26]
- >>21
a^2+b^2-c^2の正負により角度が鋭角・鈍角・直角のどれなのか 判定する方法、高校生でやらなかったっけ?
- 25 名前:132人目の素数さん mailto:sage [02/10/30 19:03]
-
- 26 名前:132人目の素数さん [02/11/16 18:42]
- ベルンシュタイン
- 27 名前:132人目の素数さん [02/11/17 09:44]
- コラッツ予想
- 28 名前:132人目の素数さん mailto:sage [02/11/17 09:48]
- 俺は
中3のとき 鋭角3角形の作図したら間違って鈍角3角形の作図をしてしまって そこから 辺の長さから鈍角か鋭角か直角かを判別する方法を思いついた 失敗は成功の元ですな
- 29 名前:132人目の素数さん mailto:sage [02/11/17 11:01]
- >>21
それが十分条件であることは実は中学校の教科書にも載っている。 しかし必要条件であることについては教科書などにも証明が載っているが 十分条件であることについての証明は載っていないようだ。
- 30 名前:132人目の素数さん [02/11/20 16:07]
- >>29
そうだったっけ。中学生の知識でも証明できるのになあ。 旧文部省がアホな横槍を教科書会社に入れたんだろうか
- 31 名前:132人目の素数さん mailto:sage [02/11/20 17:06]
- 不動点定理とかは?
中身は(小)中高レベルだけど、証明は大学レベル
- 32 名前:132人目の素数さん [02/11/20 17:14]
- 逆関数定理でしょ
- 33 名前:132人目の素数さん [02/11/20 17:15]
- ティホノフの定理
- 34 名前:132人目の素数さん [02/11/20 17:38]
- 素数の数列はまだできていないんですか?
- 35 名前:132人目の素数さん [02/11/20 20:16]
- 1=0.999・・・
- 36 名前:132人目の素数さん [02/11/20 20:17]
- 愛の事情の定義
- 37 名前:132人目の素数さん [02/11/21 01:38]
- カプランスキーの密度定理
- 38 名前:132人目の素数さん [02/11/21 01:55]
- 位相幾何のいろんな定理。
- 39 名前:132人目の素数さん [02/11/21 02:01]
- 距離化定理
- 40 名前:132人目の素数さん [02/11/21 02:45]
-
難しいのではなく ただ単に証明が長くなるってだけのような気もするが…
- 41 名前:132人目の素数さん [02/11/21 15:43]
- ゲンツェンの基本定理
難しいっていうか、めんどくさい。
- 42 名前:132人目の素数さん [02/11/21 17:48]
- Gaussの「ひどい定理」
- 43 名前:132人目の素数さん [02/12/07 04:56]
- マンコの定理。
- 44 名前:132人目の素数さん mailto:sage [02/12/07 12:17]
- 今井の定理
否定してくれ
- 45 名前:132人目の素数さん [02/12/07 13:11]
- ageの定理
- 46 名前:132人目の素数さん mailto:age [02/12/07 13:21]
- 逆関数定理とドラムの定理。
- 47 名前:132人目の素数さん [02/12/07 13:23]
- >ドラムの定理
まじ??
- 48 名前:132人目の素数さん [02/12/07 16:15]
- そういえば、ドラムの定理だかストークスの定理だかを解説したスピヴァック「多変
数解析学」とかいう本に、「基本定理であるための三条件」というのがあった: (1)それは当たり前である。 (2)それは、そこで用いられている概念を準備したことによって、当たり前になった。 (3)それから重要な結果が出る。
- 49 名前:132人目の素数さん [02/12/07 16:28]
- (1)それは当たり前である。
→ボッキする (2)それは、そこで用いられている概念を準備したことによって、当たり前になった。 →マムコを見たらボッキした (3)それから重要な結果が出る。 →ドピュ!
- 50 名前:使ってください mailto:age [02/12/07 16:37]
-
www.akitsusoft.cjb.net 高度な計算を簡単に実行可能な【関数エディタ】を実装。 サインやコサイン、また平方根などをキーボードから入力するほか、関数エディタを使って入力できます。 また特殊な計算として旅人算と鶴亀算、フーリエ展開によるパイの算出機能をバンドルしました
- 51 名前:132人目の素数さん mailto:sage [02/12/07 20:22]
- >>49
それが正しい為にはマムコが欲情の対象でなければいけないのだけど?
- 52 名前:132人目の素数さん mailto:sage [02/12/09 08:39]
- x、y、zを正の数とする。
(x+y)(−z)=(−z)+(−z)+(−z)・・・+(−z)《(x+y)個 》 =《(−z)+(−z)+(−z)・・・+(−z)《x個》 +(−z)+(−z)+(−z)・・・+(−z)《y個》 =(−z)x+(−z)y
- 53 名前:132人目の素数さん mailto:sage [02/12/10 02:13]
- n,w,x,y,zが2以上の整数であるときn,w,xを任意に定めれば
z^n=w^n+x^(n-1)+y^{n(1/n)} が成立する(y,z)の組が必ず存在する。
- 54 名前:132人目の素数さん [03/01/14 22:51]
- Shimura-Taniyama
- 55 名前:132人目の素数さん mailto:sage [03/01/14 22:54]
- Shimura-Katou-Cha
- 56 名前:132人目の素数さん [03/01/14 23:11]
- ζ(3)の値をもとめる初等的証明。
- 57 名前:132人目の素数さん [03/01/15 02:38]
- >>53の
>y^{n(1/n)} って部分、ホントは何だったんだろ?
- 58 名前:132人目の素数さん [03/01/15 02:41]
- ふえるまあノ定理
- 59 名前:132人目の素数さん [03/01/15 15:08]
- >>35
それ逆のパターンだろ 「一見納得できないように思うが証明が簡単な等式」 (Xとおいて10倍してみな)
- 60 名前:銀月@高2 ◆bWmoonQUh6 mailto:sage [03/01/16 21:49]
-
πr^2 = S (S = 円の面積、 r = 半径) 小学生の時からおなじみの、円の面積の公式ですが 積分使って無理矢理解くんですねぇ・・・・。先生に教えてもらいましたが。 積分を習ったとき、直感的に円の面積が出せるのではないかと思い 色々やってみたけど、数学的能力が足りずに挫折した罠。(w
- 61 名前:132人目の素数さん mailto:sage [03/01/17 12:23]
- >>60
別に無理矢理解いているわけじゃない。 置換積分が「無理矢理」だと感じたのかもしれないが。 そもそも「面積」「体積」の定義は積分による、とぐらいに思っておいたほうがいい。 円錐の体積が円柱の1/3なのも積分計算すればしっかりわかる。 難しくないからやってみ。
- 62 名前:132人目の素数さん mailto:sage [03/02/08 21:25]
-
- 63 名前:132人目の素数さん mailto:sage [03/02/20 08:53]
- すべての偶数は2つの素数の和である。
・・・証明されてないんだっけ?
- 64 名前:132人目の素数さん mailto:sage [03/02/21 02:42]
- いえーす。
「ゴールドバッハの予想」 science.2ch.net/test/read.cgi/math/1043043575/
- 65 名前:132人目の素数さん [03/03/02 19:39]
- >>64
勉強になります。 整数論って暗号分野で重要そうだけど、 素人の漏れには難しすぎ。。
- 66 名前:132人目の素数さん [03/03/02 21:01]
- >>63
反例:1+1=2
- 67 名前:132人目の素数さん [03/03/02 21:37]
- >>66
・・・。 どう反応していいかわからないな・・・ 二重?いや三重ボケか・・・?
- 68 名前:132人目の素数さん [03/03/02 22:12]
- >66
そもそも「1」は素数じゃない 「2」は偶数であっても2つの素数の和の条件が満たされていない それに2つの素数は異なる条件も満たしてないし。
- 69 名前:132人目の素数さん [03/03/02 22:16]
- 66は、単に
「4以上の」が抜けてることを指摘したかったんじゃないの?
- 70 名前:132人目の素数さん mailto:sage [03/03/02 22:16]
- >>68
だから反例じゃないのか。 「2つの異なる」の条件は>>63は言ってないし。
- 71 名前:132人目の素数さん mailto:sage [03/03/03 18:51]
- とりあえず>>63は「4以上の」と今のうちに訂正しときなされ。
粘着質がその本性を表す前に。
- 72 名前:こんなんどうよ [03/03/04 00:49]
- Fejerの定理
[0,1]で周期的な区分的C^1-関数のFourier級数が絶対収束する。 証明の準備が面倒。
- 73 名前:132人目の素数さん [03/03/04 00:52]
- 四色定理
- 74 名前: ◆PHIosb3sQA mailto:sage [03/03/04 01:06]
- >>19
禿同
- 75 名前:132人目の素数さん [03/03/04 01:08]
- >>63
たかだかことなる
- 76 名前:132人目の素数さん [03/03/04 08:40]
- 三平方の定理
- 77 名前:132人目の素数さん [03/03/04 11:16]
- 1+1=田んぼの田
- 78 名前:132人目の素数さん [03/03/04 17:34]
- コーシー・シュワルツの不等式
- 79 名前:132人目の素数さん [03/03/05 04:09]
- 整数が体をなすことの証明は少し面倒。
さらに有理数の切断として実数を定義したとして、 実数に関して体の公理が満たされていることの証明。 ユークリッドの幾何学で、平行線の公理が他とは独立であることの証明。 平面射影幾何学で、デザルグの定理が他の公理とは独立であることの証明。 素数定理の初等的証明。 正17角形の作図に関する純幾何学的証明(座標などを用いない)
- 80 名前:132人目の素数さん mailto:sage [03/03/05 04:15]
- >>79
整数って体をなすの?
- 81 名前:132人目の素数さん [03/03/05 07:12]
- >>80
もちろんなさないからタイプミスだと思うんだけど 79が元々は何を書こうとしてたのかがわからない 整数が環をなすこと…じゃなさそうだし 有理数が体をなすこと…もどうかなあって感じ
- 82 名前:132人目の素数さん mailto:sage [03/03/05 07:26]
- 有理数から実数を構成するのはデデキントカットであれなんであれ、
ようするに位相的な話だから「実数が体をなすか否か」っていう 純粋な代数の話は有理数で成立してればすぐ導けるでしょ。 具体的に言えば a:0以外の任意の実数 としたときに、有理数列 {a_n} を a に収束する コーシー列として、有理数列 {1/(a_n)} が実数 1/a に収束することを示せばいい。 普通に通分して示すやつね。 今は面倒だからコーシー列を扱ったけど、デデキントカットで実数を構成するのと コーシー列による構成が同値であるのは学部1年の演習レベルなんで省略。
- 83 名前:山崎渉 mailto:(^^) [03/03/13 13:18]
- (^^)
- 84 名前:132人目の素数さん mailto:sage [03/03/16 08:09]
-
- 85 名前:132人目の素数さん [03/04/15 03:02]
- (・∀・)ゲハハハハ
- 86 名前:132人目の素数さん [03/04/15 20:44]
- どんな多角形も3角分割できるという定理。
- 87 名前:132人目の素数さん [03/04/15 22:29]
- チン弧>マン弧
- 88 名前:132人目の素数さん [03/04/19 18:31]
- (・∀・)ゲハハハハ
- 89 名前:山崎渉 mailto:(^^)sage [03/04/20 04:00]
- ∧_∧
( ^^ )< ぬるぽ(^^)
- 90 名前:132人目の素数さん [03/04/25 19:22]
- 「p進体を考える事が重要である」という命題
- 91 名前:132人目の素数さん [03/05/18 05:20]
- 15
- 92 名前:山崎渉 mailto:(^^) [03/05/21 22:19]
- ━―━―━―━―━―━―━―━―━[JR山崎駅(^^)]━―━―━―━―━―━―━―━―━―
- 93 名前:山崎渉 mailto:(^^) [03/05/21 23:47]
- ━―━―━―━―━―━―━―━―━[JR山崎駅(^^)]━―━―━―━―━―━―━―━―━―
- 94 名前:山崎渉 mailto:(^^) [03/05/28 15:14]
- ∧_∧
ピュ.ー ( ^^ ) <これからも僕を応援して下さいね(^^)。 =〔~∪ ̄ ̄〕 = ◎――◎ 山崎渉
- 95 名前:132人目の素数さん [03/06/07 13:39]
- デデキントカットって格好イイ。
デデキントビームやデデキントブーメラン デデキントハリケーンも強そうだ。
- 96 名前:mathmania ◆uvIGneQQBs [03/06/07 14:40]
- 有理数のデデキントカットについて、
lim_{n→∞}1/n=0を示せ。 但し、nは正整数のみをとり、1/nは、{1/n以下の有理数},{1/nより大きい有理数}の組とし、 lim_{n→∞}a(n)=aとは、任意のε>0に対してある番号から先のすべてのnに対して|a(n)-a|<εとする。 また、二つのデデキントカット(A,B),(C,D)に対して、 (A,B)>(C,D)は、CはAの真部分集合であるとして定義する。
- 97 名前:132人目の素数さん [03/07/05 06:51]
- 2
- 98 名前:132人目の素数さん [03/07/05 10:44]
- Q.E.Dという漫画の最新刊にデテキントの切断の説明がある。
- 99 名前:132人目の素数さん [03/07/05 11:10]
- デデキントfuckってのもあると聞いた。
- 100 名前:132人目の素数さん mailto:sage [03/07/05 12:25]
- >>99
本当にあんの?
- 101 名前:132人目の素数さん [03/07/05 13:08]
- 別名サンドイッチfuckとも言う。つまり男二人に女一人の3p。
両側から挟むわけだ。
- 102 名前:132人目の素数さん mailto:sage [03/07/05 13:23]
- 区間縮小法fuck?
- 103 名前:132人目の素数さん mailto:sage [03/07/05 13:42]
- 男→男→女でよろしいでつか?
- 104 名前:132人目の素数さん mailto:sage [03/07/10 08:51]
- 昔、大学受験で三平方の定理の証明が出てしまった
秋山仁が100通りの方法で以上証明できるとかいってたなぁとか思ったけど ひとつもかけなかったのが今でもくやまれる。
- 105 名前:山崎 渉 mailto:(^^) [03/07/15 12:54]
-
__∧_∧_ |( ^^ )| <寝るぽ(^^) |\⌒⌒⌒\ \ |⌒⌒⌒~| 山崎渉 ~ ̄ ̄ ̄ ̄
- 106 名前:132人目の素数さん [03/08/02 05:21]
- 8
- 107 名前:132人目の素数さん [03/08/03 06:46]
- 大数の法則とか、中心極限定理は直感的にはかなり明らかなんだがなぁ。
- 108 名前:山崎 渉 mailto:(^^) [03/08/15 19:30]
- (⌒V⌒)
│ ^ ^ │<これからも僕を応援して下さいね(^^)。 ⊂| |つ (_)(_) 山崎パン
- 109 名前:132人目の素数さん mailto:sage [03/08/17 09:39]
-
- 110 名前:132人目の素数さん [03/08/18 11:09]
- ほしゅったらageろ!
- 111 名前:132人目の素数さん [03/09/30 06:16]
- 3
- 112 名前:132人目の素数さん [03/10/23 05:53]
- 20
- 113 名前:132人目の素数さん [03/10/23 07:18]
- 一般結合法則の証明。
集合 M 上に結合則 (x * y) * z = x * (y * z) を満たす 算法 * が与えられたとき、任意の有限列(x_1, x_2, ..., x_n) に 対して、演算の順序(括弧の付け方)によらず一意的に x_1 * x_2 * ... * x_n ∈ M を定義できることを示せ。 あまりに当たり前すぎるので、実際に証明した人は誰もいないかも。 証明にはややこしい帰納法が必要になる(と思う)。
- 114 名前:132人目の素数さん [03/10/23 10:46]
- >>113
x1*x2=X として X*(x3*x4)=(X*x3)*x4 X*x3=X2 として 繰り返せば 超簡単です。
- 115 名前:W不 ◆v.V7zKGUME [03/10/23 10:47]
-
- 116 名前:132人目の素数さん [03/10/23 13:45]
- >>114
ちゃんと形式的に書いてみろや。 「繰り返せば 超簡単です」じゃ証明になってねーだろ。
- 117 名前:132人目の素数さん [03/10/23 19:00]
- >>113
これは * → + にしても同じだから a+(b+c)=(a+b)+c にしても同じことになる。 a+b+c+d+e これが何を示すか定義がない。(順番は変わらないのか) もしも a+(b+c)=(a+b)+c=|a+b+c| <-- 括弧のつけ方によらず一意的に決まる。 のなら |a+b| 一意的に決まった演算 |a+b|+c=|a+b+c| ならほんとに自明だし。演算に対する定義が不足していませんか。 単位元と逆元だとか。
- 118 名前:132人目の素数さん [03/10/23 19:10]
- チェビシェフの定理
- 119 名前:132人目の素数さん [03/10/23 19:19]
- うk
- 120 名前:132人目の素数さん [03/10/23 19:20]
- そりゃナンバー1はピエールの最終兵器でしょう。
それでは問題です。 僕は132人目のW不 ◆v.佐藤君に15円を返しました。 硬貨2枚で返しました。そのうちの1枚は5円ではありません。 2枚の硬貨はそれぞれいくらでしょうか?
- 121 名前:132人目の素数さん [03/10/23 19:25]
- 10円玉2枚。
- 122 名前:132人目の素数さん [03/10/23 19:25]
- >>121
ブー
- 123 名前:W不 ◆v.V7zKGUME [03/10/23 19:30]
- 高木ブー
- 124 名前:120 [03/10/23 19:32]
- >>120
誰もわからんのか?こんな簡単な問題が・・・・・・・
- 125 名前:132人目の素数さん mailto:sage [03/10/23 19:50]
- >>120
10円5円
- 126 名前:132人目の素数さん [03/10/23 19:58]
- >>125
正解
- 127 名前:W不 ◆v.V7zKGUME mailto:sage [03/10/23 20:02]
- >>120
気づかなかった・・・。 やめちクリ・・。 その人俺じゃないけどね。
- 128 名前:132人目の素数さん mailto:sage [03/10/23 22:10]
- >>113
n に関する帰納法で 4 行ぐらい。
- 129 名前:132人目の素数さん [03/10/23 22:19]
- 球の詰め込みに関するケプラー予想はどうだろう。
- 130 名前:132人目の素数さん [03/10/23 23:11]
- >>128
4行ならここに書いてみて。
- 131 名前:132人目の素数さん mailto:sage [03/10/23 23:18]
- >>130
X_1(x_1,...,x_m)*X_2(x_{m+1},...,x_n) =(Y_1(x_1,...,x_l)*Z(x_{l+1},...,x_m))*X_2(x_{m+1},...,x_n) (帰納法の仮定) =Y_1(x_1,...,x_l)*(Z(x_{l+1},...,x_m)*X_2(x_{m+1},...,x_n)) (結合法則) =Y_1(x_1,...,x_l)*Y_2(x_{l+1},...,x_n) (帰納法の仮定) 記号の意味は考えてください。
- 132 名前:132人目の素数さん mailto:sage [03/10/25 03:53]
- 地図塗り分け問題って、
他のどの公理からも演繹できないような気がするのですが、 あれ自体公理ってことですか?
- 133 名前:132人目の素数さん [03/10/25 21:22]
- 非線型漸化式 a[n+1] = p*a[n]^2 + q の一般項 a[n] が
n および a[0] の初等関数のみによって表されるのは q = 0 または pq = -2 のときに限る。
- 134 名前:132人目の素数さん mailto:sage [03/10/25 21:22]
- p = 0 もあるだろ。
- 135 名前:133 [03/10/25 21:24]
- 訂正します。
非線型漸化式 a[n+1] = p*a[n]^2 + q の一般項 a[n] が n および a[0] の初等関数のみによって表されるのは pq = 0 または pq = -2 のときに限る。
- 136 名前:132人目の素数さん mailto:sage [03/10/25 21:26]
- p = 0 なら非線型ではないだろ。
- 137 名前:134 mailto:sage [03/10/25 21:48]
- >>136 スマン
- 138 名前:133 [03/10/25 22:06]
- そっか。ともかく >>133 は未解決問題っす。
- 139 名前:132人目の素数さん [03/10/26 14:27]
- 自然数の和・積が結合法則・分配法則を満たすこと
- 140 名前:132人目の素数さん [03/11/08 05:54]
- 1
- 141 名前:132人目の素数さん [03/11/08 18:09]
- 連結の話しで結論は出る
- 142 名前:132人目の素数さん [03/11/09 00:09]
- 「地球(球体)を平面に直すことは無理である」
- 143 名前:132人目の素数さん [03/11/09 08:21]
- >>19に同意
- 144 名前:132人目の素数さん mailto:sage [03/11/30 17:35]
- 定理。
- 145 名前:132人目の素数さん mailto:sage [03/11/30 18:32]
- 全ての数は1で割り切れる?
- 146 名前:132人目の素数さん [03/12/11 05:55]
- 20
- 147 名前:132人目の素数さん mailto:sage [03/12/11 16:49]
- a,b,c,nが自然数であり、n>2のとき、
次の式を満たすa,b,cは存在しない。 a^n+b^n=c^n
- 148 名前:147 mailto:sage [03/12/11 16:50]
- 誤)次の式を満たすa,b,cは存在しない。
正)次の式を満たすa,b,c,nは存在しない。
- 149 名前:132人目の素数さん [03/12/13 22:16]
- 次の二つが同値であること。
「x=5 かつ y=3」 「自然数x,yに対して、y^3=x^2+2」
- 150 名前:132人目の素数さん mailto:sage [03/12/13 22:39]
- 一見当たり前におもえないけど
- 151 名前:132人目の素数さん mailto:sage [03/12/18 16:31]
- 149みたいなのを定理と言わないということは言うまでもないとして、
何が定理で何がそうでないのかの基準みたいなのってあるの? 工房だからよくわからんです。
- 152 名前:亀レス [03/12/25 09:48]
- >>79
素数定理の初等的証明はSelberg全集に9頁程で載っているが; 大学1年レベル(複素函数論未修)から色々と準備してやるのに比べてもなお 難しいかどうかは疑問.ヤサシクハナイケドネ それ以前に,素数定理は「一見当たり前」だろうか?>ALL 未だ修行中の自分にはそんな確信は持てない…(´・ω・`)
- 153 名前:132人目の素数さん [03/12/25 10:51]
- >>151 公理から導けるのが定理でないの?
- 154 名前:132人目の素数さん mailto:sage [03/12/25 21:28]
- >>152
> Selberg全集 それ、知らんかった。読んでみまつ。thx.
- 155 名前:132人目の素数さん [03/12/25 21:56]
- >>152-153
わざわざ全集なんか持ち出さなくてもHardy&Wrightとかに載ってるわけだが。
- 156 名前:132人目の素数さん mailto:sage [03/12/25 21:59]
- フェルマーの大定理だっけ?
「俺、すげぇ発見したよ!でもここにはソレを書くスペースがないんだなぁ」 ってやつ。
- 157 名前:132人目の素数さん [03/12/25 22:02]
- 素数定理の初等的証明ここに書いてくれ
- 158 名前:132人目の素数さん mailto:sage [03/12/26 17:16]
- ハッハッハ!
何とかサギヤーって香具師の数論入門って本買って見たのよ。 入門って書いてあるくせになんで群、体、コンパクト、異である、な〜んてのが説明なしで載ってんだ? ふざけるなよ、入門書じゃねえのかああああああああ!?
- 159 名前:153 mailto:sage [03/12/26 20:19]
- >>155 いや、そっち方面不勉強なもんで、そもそも初等的証明は
読んだことなかっただけ。 いずれにせよ、thx.
- 160 名前:132人目の素数さん [04/01/09 02:12]
- オセロは後手だと負けない完全手が存在する。
- 161 名前:132人目の素数さん [04/01/09 03:25]
- >>153 公理と定義から導かれる命題でも、
定理といわずに系ということもある。 まぁ、定理から簡単に導かれるようなものなんだろうが・・・ 定理はある程度使いや少ないと定理にならないんじゃないかな
- 162 名前:132人目の素数さん mailto:sage [04/01/09 03:30]
- 系も定理。
- 163 名前:132人目の素数さん [04/01/12 01:17]
- 連続関数にはそれに対応した連続な原始関数が存在し、不定性は定数のみである。
- 164 名前:132人目の素数さん mailto:sage [04/01/29 04:33]
- 496
- 165 名前:132人目の素数さん mailto:sage [04/02/01 05:37]
- 254
- 166 名前:132人目の素数さん [04/02/18 08:24]
- 20
- 167 名前:132人目の素数さん mailto:sage [04/02/20 13:52]
- 素因数分解が可能であることとその一意性を Peano Arithmetic で証明せよ.
- 168 名前:132人目の素数さん [04/02/25 02:03]
- NP が P よりも新に大きいことの証明。
- 169 名前:132人目の素数さん [04/02/25 08:55]
- G と G/N の部分群・正規部分群の対応定理
R と R/I の部分環・イデアルの対応定理 たいていの本で触れてるけど証明が書いてないネ。
- 170 名前:132人目の素数さん mailto:age [04/02/25 15:13]
- 1=1
- 171 名前:別のところの62 mailto:sage [04/02/25 17:43]
- >>169
うんうん。 正規部分群で割った剰余群の対応定理って重要なんだけど、証明は 省かれることが多いね。 Nが自明でない場合、G/Nの位数が2以上|G|以下となり、帰納法の 仮定が使えることなどがある(有限群論は位数に関する帰納法が お得意パターン)ので、書いておいてほしいんだけどねぇ。 でもまぁ、事実として知って使えるだけでもいいと思う。
- 172 名前:132人目の素数さん mailto:sage [04/02/25 17:51]
- e^πの超越性
- 173 名前:169 [04/02/26 06:21]
- 和書で書いてある本を見たことがない。
洋書だと書いてあるのかな?鈴木さんの群論には書いてあったかな? ここの↓には書いてあります。 www.math.uiuc.edu/~r-ash/
- 174 名前:132人目の素数さん mailto:sage [04/02/26 09:30]
- 『Gを群とし、Nをその正規部分群とするとき
GのNを含む部分群とG/Nの部分群は一対一に対応する』? 多少まわりくどい書き方になってるが松坂和夫/代数系入門には書いてあるぜ。
- 175 名前:132人目の素数さん [04/02/27 01:20]
- >>173
Ash さんいいですね。 検索してみたら離散数学関連で学位をとったひとみたい。70才ぐらいかな? 専門が離散数学なんだか数論なんだか環論なんだかはっきりしないのがイイ。
- 176 名前:175 [04/02/27 01:22]
- 確率論や情報理論みたいなのもやってるみたい。
日本だとこういうひとは少ないですよね。
- 177 名前:132人目の素数さん [04/02/27 14:41]
- 複素数平面の定理
- 178 名前:132人目の素数さん mailto:sage [04/02/27 16:07]
- >>169
f: G → G/N を標準全射、 Φ: {H|H ⊇ N なるGの部分群} → {H'|G/N の部分群}:Φ(H) = f(H) Ψ: {H'|G/N の部分群} → {H|H ⊇ N なるGの部分群}:Ψ(H') = f^(-1)(H') としてΦΨ=id、ΨΦ=idを示すだけ。 あまりに簡単だから書いてないだけだろ。
- 179 名前:132人目の素数さん mailto:sage [04/02/27 16:08]
- >>177
何それ?
- 180 名前:132人目の素数さん [04/02/27 23:20]
- >>178 そんなに簡単じゃないぞ。
- 181 名前:132人目の素数さん [04/02/27 23:33]
- 1+1=2
- 182 名前:132人目の素数さん [04/02/27 23:37]
- >>178
以前試験で出したら満足行く解答を書いた学生はひとりだけでした。
- 183 名前:182 [04/02/27 23:41]
- モジュラー律の証明なんかもデキが良くなかったです。
答えを言っちゃうとカンタンなんですけどね。
- 184 名前:132人目の素数さん [04/02/27 23:56]
- 連結なグラフの辺を縮めても連結グラフになる。
コテコテでない証明ある?
- 185 名前:132人目の素数さん [04/02/28 00:54]
- ‐1×(‐1)=1
ってどうやって証明するの?
- 186 名前:132人目の素数さん mailto:sage [04/02/28 01:06]
- >>185
-1とは乗法の単位元1の加法に関する逆元と定義し、分配法則を認めるならば、 次の通り: 1+(-1)=0, 両辺に-1を掛けると(-1)・1+(-1)(-1)=0, ここで(-1)・1=-1だから -1+(-1)(-1)=0, よって(-1)(-1)は-1の加法に関する逆元すなわち1である。 なお、(-1)・0=0を用いたが、その証明も同様にしてできる。
- 187 名前:132人目の素数さん mailto:sage [04/02/28 02:28]
- 選択公理⇒Zornのレンマ
証明読むのは簡単だけど、絶対自分じゃ思いつかない。 集合論は当たり前そうで証明できないのが多いな。
- 188 名前:132人目の素数さん [04/02/28 03:43]
- 自分で思いつくかどうかで言ったら
ほとんどの定理は思いつかんと思うが
- 189 名前:132人目の素数さん mailto:sage [04/03/02 02:12]
- >>180
簡単じゃない? どこが?
- 190 名前:132人目の素数さん mailto:sage [04/03/02 02:20]
- >>171
「事実として知って使えるだけでもいい」? アホか。準同型定理なんて直感的に明らかだし 証明も単なるルーチンワーク。 こんなもんすぐに証明できないようなら数学の 研究なんかできるわけない。
- 191 名前:132人目の素数さん mailto:sage [04/03/02 12:36]
- 軍艦隊の入門書で、準同型定理の証明が載ってないのなんてあるのか?
- 192 名前:132人目の素数さん mailto:sage [04/03/02 13:59]
- >>158
Serreよりましだよ……
- 193 名前:132人目の素数さん mailto:sage [04/03/02 14:00]
- ゲーデルの第二不完全性定理で使うLoebの性質のIIIが
証明大変で、日本語の本には殆ど書いてない。書いてある本は皆無。
- 194 名前:132人目の素数さん [04/03/03 02:18]
- 純初等幾何的手法による三平方の定理の証明。
- 195 名前:132人目の素数さん [04/03/03 07:22]
- Dカップ=巨乳
- 196 名前:132人目の素数さん mailto:sage [04/03/07 14:49]
- 766
- 197 名前:132人目の素数さん [04/04/01 15:28]
- 自己共役作用素のスペクトル定理
- 198 名前:132人目の素数さん mailto:sage [04/04/01 18:18]
- 77
- 199 名前:132人目の素数さん [04/04/09 12:55]
- 非常に基本的で、解析学でそれこそあたりまえのように使われている定理。
アルキメデス的順序体(例えば有理数体、実数体)で0<r<1ならば lim_{n→∞} r^n = 0. 証明は難しくはないけど、ちょっとした工夫が必要。案外解析学の教科書に 証明が載ってなかったりするので、知らない人はやってみると良いと思う。
- 200 名前:132人目の素数さん mailto:sage [04/04/25 23:15]
- 307
- 201 名前:132人目の素数さん [04/05/04 04:10]
- ↑に定理と命題と系ってなに?って書かれていたらマジレス
定理も系も演習問題も全て命題。 命題の中で特に重要なものを定理、定理から ただち導かれる命題(特に大切なもの)を系、 演習用に出す命題を演習問題といいます。
- 202 名前:132人目の素数さん [04/05/04 08:04]
- >>199
1/r = (1 + h), h > 0 として2項定理を使って、 lim_{n→∞} (1 + h)^n = ∞ を示すのかな?
- 203 名前:132人目の素数さん mailto:sage [04/05/04 11:43]
- >>199
0<r<1のとき r^n = 1/(1/r)^n この時1/r=1+t(t>0)と置けば、2項定理によって (1/r)^n=(1+t)^n=1+(n 1)t+(n 2)t^2・・・・+t^n ここで(n m)はnCmを表す。 ∴(1/r)^n>1+nt(n≧2) n→∞のときnt→∞だから(1/r)^n→∞ よってlim_[n→∞]r^n=0 教科書読みました。その程度自分で解きました(w
- 204 名前:132人目の素数さん mailto:sage [04/05/04 18:57]
- 厨でもよく考えれば分かるけど大人でも油断すると解けない
みたいな問題ってない?
- 205 名前:132人目の素数さん mailto:sage [04/05/04 19:47]
- >>204
任意のn∈N,n≧3についてx^n+y^n=z^nを満たすx,y,z∈Nは存在しない。 とかどうよ。
- 206 名前:132人目の素数さん mailto:sage [04/05/04 20:02]
- >>205
油断しても解けない罠。
- 207 名前:132人目の素数さん mailto:sage [04/05/04 23:18]
- >>206
それを言うなら「油断しなくても解けない罠」では?
- 208 名前:132人目の素数さん mailto:sage [04/05/05 13:49]
- まず∈の意味が分からない
- 209 名前:132人目の素数さん mailto:sage [04/05/05 15:22]
- 述語(predicate)っていうんだったっけ?
- 210 名前:132人目の素数さん mailto:sage [04/05/05 23:18]
- >>208
くちばしだよ。 ノノノノ (゚∈゚*)
- 211 名前:132人目の素数さん [04/05/07 00:58]
- ユピタフの基本定理
- 212 名前:132人目の素数さん [04/05/22 22:12]
- >>120の答えってどういう意味?
- 213 名前:132人目の素数さん [04/05/22 22:42]
- なあサイコロ2回振って連続で1が出たとして
次振ってまた1が出る確率ってやっぱ六分の一だよな?
- 214 名前:132人目の素数さん mailto:sage [04/05/23 00:01]
- サイコロが変な形してるとか、二十面サイコロとかじゃない限り六分の一だ。
変な人がそうではないと主張してたけど気にしちゃ駄目だよ。
- 215 名前:132人目の素数さん [04/05/23 00:10]
- サイコロの一振りは独立だからね。
3回目が1がでるとわかっていたら、1回目に1がでる確率は?
- 216 名前:132人目の素数さん mailto:sage [04/05/23 00:19]
- >>215
言いたい事はわかるんだけど、それだと一回目を振る前から三回目に出る目が 分かるサイコロみたいで不気味だ。 「3回目に1がでたとわかっていた時、1回目に1がでていた確率は?」 だろ。
- 217 名前:132人目の素数さん [04/05/23 22:26]
- n角錐の体積が、n角柱の体積の1/3になる
- 218 名前:132人目の素数さん mailto:sage [04/05/23 22:33]
- >>216
俺はネ申なのでわかる。
- 219 名前:132人目の素数さん [04/05/24 23:35]
- >>216
サイババのサイコロなので。。。
- 220 名前:132人目の素数さん mailto:sage [04/05/26 14:53]
- サイコロを振る回数を増やしていったら出目の確率は6分の1に収束していくだろ?
そういう観点からみたらしょっぱなから連続ででた目が次にでる確率は 6分の1より低いんじゃねーの?
- 221 名前:132人目の素数さん [04/05/26 22:24]
- >>220
いや、そのりくつはおかしい
- 222 名前:132人目の素数さん [04/05/26 23:47]
- >>9 と >>19 でがいしゅつのジョルダソの閉曲線定理だけど、これの高次元バージ
ョンについては証明はおろか、定理のステートメントすら書いてある本がほとんどな い。2次元だと複素関数論に関係ありそうだが、高次元だと他の分野に応用がないか らなのか。
- 223 名前:132人目の素数さん mailto:sage [04/05/27 00:53]
- >>222
Jordan-Brouwerの定理 Alexanderの双対定理
- 224 名前:132人目の素数さん mailto:sage [04/05/27 11:30]
- うむ。小松・中岡・菅原の681頁、つまり本文の終わりから3頁目に
出てくる。大抵の人間はそこまで辿り着けない。
- 225 名前:132人目の素数さん [04/05/28 22:10]
- >>214>>220
どっちが正しい?
- 226 名前:linear PDE ◆O5M8Y2WWjk [04/05/28 22:15]
- >>214が正しいに決まってる。
単なる条件付確率。
- 227 名前:132人目の素数さん mailto:sage [04/05/28 22:17]
- >>225
数学的にはそこまでで何回1が出たかに関係なく次に1が出る確率は常に1/6。 統計学的にはそこまでで1がたくさん出ていたなら次に1が出る確率は1/6より大。
- 228 名前:132人目の素数さん mailto:sage [04/05/28 22:58]
- >>220はおもろいけど詭弁
- 229 名前:132人目の素数さん [04/05/29 08:41]
- 証明が難しいってことは当たり前ではないってことだな。
それが一見、当たり前に思えるのは錯覚。だから当たり前とか トリビアルとかいう言葉には用心しなければならない。 まあ、実際当たり前のときも多いからなおさらやっかいなんだが。
- 230 名前:132人目の素数さん [04/05/30 23:30]
- 数学的に厳密に証明しようと思えば大変な命題でも
時に人間は、瞬時に理解することができる。 かと思えば、数学的に考えれば明らかな命題に対して 時に人間の直感は謝った答えを出す。 いったいその差は何なんだろう。
- 231 名前:132人目の素数さん [04/05/31 02:44]
- 二等辺三角形の底角は互いに等しい。
一分以内に証明しろと言われると案外出来ない。 底辺の中点をとれば瞬殺だがみな底辺に垂線を下ろしてしまう。
- 232 名前:132人目の素数さん mailto:sage [04/05/31 05:36]
- >>231
底辺の中辺をとるのは循環論法になるのでは? 「対応する3辺どうしがそれぞれ等しい2つの三角形は合同である」 を証明するのに 「二等辺三角形の底角は互いに等しい」 を使うので.
- 233 名前:132人目の素数さん mailto:sage [04/05/31 11:39]
- 円錐を斜めに切ると楕円・放物線・双曲線になること。
- 234 名前:中川泰秀 [04/05/31 12:24]
- 積分公式がよく分からない。
- 235 名前:132人目の素数さん mailto:sage [04/05/31 12:26]
- 自然数の全体は整列集合
- 236 名前:132人目の素数さん mailto:sage [04/06/01 13:27]
- >>231
垂線でも瞬殺。 直角三角形で斜辺が等しく、他の1辺(垂線)が共通だから。
- 237 名前:132人目の素数さん [04/06/09 15:40]
- 201
- 238 名前:132人目の素数さん [04/06/09 20:36]
- / / / / / / / / / / / / /
(\/)/|/|∧|\__)V(_ノ)__ / /⌒ ⌒) / 〈  ̄ヽ⌒⌒\ / | ノノヽ ノ/^\/^! ( (⌒)ノノノ /\/ヽ | ヽ |ノ、 , | ´ `| < ・ > |<・>/ ■ ■ |/||_||_||_||_| (6 ~ ~ | 、_` !´_,| ´ 」` | (⌒゜ ⌒゜| (= '(=| / | 〜 |<| | | |~| || 、/^^\| ⌒ 」⌒ | , | | ( (+⌒X⌒))\| | |/| \ ^ / ' ー= / 3 | | ヽ_ ^_ノ\__/ \__/ \__/\__/__| \ \ \  ̄\ \ \ \ \ \ \ \ \ \ \ \
- 239 名前:132人目の素数さん mailto:sage [04/06/10 01:46]
- >>236
その直角三角形の合同条件は平行線公理が必要かと。 それに、垂線の足が底辺の二頂点の間にあることの 証明も。
- 240 名前:132人目の素数さん [04/06/10 02:31]
- 幾何の証明に代数的手法はどこまで使っていいんだろう?
- 241 名前:132人目の素数さん mailto:残虐age [04/06/10 06:02]
- 三角形の合同条件(三辺、二辺挟角、二角挟辺)
→二つの三角形は本当に合同 を示せ、とか難しいと思う。これって公理じゃないしね
- 242 名前:132人目の素数さん mailto:sage [04/06/14 21:26]
- 2点を結ぶ曲線で距離が一番短いのは直線。
ロバでも分る。
- 243 名前:132人目の素数さん [04/06/16 04:32]
- メロンパンは実在する
メロンパンにメロンは使われていない メロンは実在する ウグイスパンは実在する ウグイスパンに鶯は使われていない 鶯は実在する 以上の事実をふまえれば、カッパ巻きが存在し それにカッパが使われていない事からカッパは存在することは明らか
- 244 名前:132人目の素数さん [04/06/23 22:15]
- >>243
いやそれはおかしい メロンが実在するかどうかが証明されてない そんなもん拝んだことないしな
- 245 名前:132人目の素数さん [04/06/23 23:25]
- >>244
証明 メロンをmとすると、求める方程式はm=(x-2)(x+1)と表すことが出来る。 これを解くと、m=2, -1 よって、この世の中には二種類のメロンが存在していることになる。 ※二種類=中が黄緑のと、中がオレンジのもの
- 246 名前:132人目の素数さん [04/06/23 23:37]
- >>245
その方程式は何? 多分(m-2)(m-1)=0 m=2, -1 って書きたかっただろw
- 247 名前:132人目の素数さん [04/06/24 00:20]
- >>245
白もあるぞ。 ハネデューメロンとかホームランメロンとかなんかいうやつ。 よってその証明は偽だ。
- 248 名前:132人目の素数さん mailto:sage [04/06/24 00:29]
- >>243
すべての○○××において ○○××に○○が使われていなければ○○は実在する証明が必要だな。
- 249 名前:132人目の素数さん [04/06/24 00:33]
- つーか実在するに決まってんだろwおまえらよくこんなしょうもないことで盛り上がれるな・・・
むしろ重要なのはメロンがおやつに入るかどうかの証明だろ
- 250 名前:132人目の素数さん mailto:sage [04/06/24 00:49]
- >>243
その論法ではウグイスパンやメロンパンがパンであることが重要。 カッパ巻きはパンでないのでその証明は誤り。
- 251 名前:132人目の素数さん mailto:sage [04/06/26 15:46]
- >>244
とりあえずお前の連絡先を教えろ。直接メロンを持っていってやる。
- 252 名前:132人目の素数さん [04/06/26 16:07]
- メロン食べたい(;´Д`)ハァハァ
- 253 名前:132人目の素数さん mailto:sage [04/06/28 06:47]
- ルジャンドル多項式
量子力学や電磁気のラプラス方程式の解としてよくでてくるが いまだによくわからん・・・
- 254 名前:132人目の素数さん [04/06/28 21:27]
- 一見難しそうだが、証明が容易な定理。
公理系が無矛盾ならその公理系はモデルを持つ。
- 255 名前:132人目の素数さん [04/06/29 13:08]
- ジョルダンの閉曲線定理
- 256 名前:132人目の素数さん mailto:sage [04/06/30 09:04]
- シェーンフリースの定理
- 257 名前:132人目の素数さん [04/07/17 01:06]
- 正則局所環では素元分解が一意的
- 258 名前:FeaturesOfTheGod ◆UdoWOLrsDM [04/07/17 05:56]
- ウリゾーンの補題:
正規ハウスドルフ空間Xの二つの互いに交わらない閉集合A,Bに対して、 X上の実連続関数fで、f(A)={0},f(B)={1}となるものが存在する。
- 259 名前:FeaturesOfTheGod ◆UdoWOLrsDM [04/07/17 05:58]
- [>258]のステートメントはもう少し強い形の主張ができる。誰かかいといてくれ。
- 260 名前:132人目の素数さん [04/07/17 12:29]
- >>257
>>258 一見何処が当たり前なんだ
- 261 名前:132人目の素数さん [04/07/17 23:14]
- >>260
特異点でないところで 素因子が局所的に一つの多項式の零点でかけるというのは 直感的にはそうあって欲しいというくらいの意味で。 まじれすかこわるい
- 262 名前:132人目の素数さん [04/07/17 23:21]
- >>258
ウリゾーンというのはもとのロシア語ではウィルソンと発音するそうだ。 ローマ字表記をドイツ語っぽく読んだものと思われ
- 263 名前:132人目の素数さん [04/07/17 23:30]
- >>261
一般の正則局所環については少し難しいが、代数多様体の 正則局所環に関しては、その完備化が体上の形式ベキ級数環に なるからWeierstrassの予備定理が使えて、わりと簡単。
- 264 名前:263 [04/07/17 23:39]
- >>263
一般の場合もBourbaki流に正規環上の加群の因子を使うと、 正則局所環のホモロジー大域次元が有限であることと合わせて 簡単に証明される。
- 265 名前:132人目の素数さん [04/07/18 00:07]
- >>261>>263>>264
なるほどそういう事か。だったら正則環でも当たり前そうだ。
- 266 名前:132人目の素数さん [04/07/18 00:26]
- フェルマーの最終定理
- 267 名前:132人目の素数さん [04/07/18 08:29]
- >>265
局所環上の射影加群は自由だが局所環でない正則環だとそうなるとは 限らない。>>264の証明は正則局所環上の有限生成加群が有限自由分解 を持つことがキーになっている。
- 268 名前:132人目の素数さん [04/07/18 14:02]
- >>267
おっしゃる通り ちなみに >>265 デデキント環であって一意分解環でないものがあるから正則環ではだめなのは明白。
- 269 名前:132人目の素数さん [04/07/29 20:32]
- 157
- 270 名前:132人目の素数さん mailto:sage [04/07/30 09:49]
- サイコロの目の話が出ていたので便乗させて頂きます
下記スレ602にルーレットの必勝法として >例えば黒-黒-黒と同じ色目が3回出たら、4回目に赤を賭ける。 >もし4回目も黒だったら、5回目は4回目の倍の金額を赤に賭ける。 ちなみにルーレットのマスは計38ヶ 黒18ヶ 赤18ヶ 緑2ヶ(0と00) これを書き込んだ602は絶対に勝てると言って否定するヤシを次々に粘着罵倒 最近では住人から荒し呼ばわり、この602は荒しなのか正論なのか?証明してくれる方募集です 緑の0と00を無視して証明されてもかまいません このスレにリンクしようとしましたがこちらの空気を汚しそうなので こちらに書き込む事にしました、宿題終わった方ヨロシク。 travel2.2ch.net/test/read.cgi/oversea/986654762/
- 271 名前:132人目の素数さん mailto:sage [04/08/02 23:48]
- >>270
そのスレの602は要するに条件付確率を理解していない。それだけだな。 (説明が難しい「倍賭け法」をからませているが、それ以前の問題。)
- 272 名前:132人目の素数さん [04/08/08 23:45]
- 一見間違ってるが、実は正しいセリフ。
「もしも俺が鳥ならば月まで飛んでいける!」
- 273 名前:132人目の素数さん [04/08/09 01:27]
- >>272
朕に詳細を教えやがりなさい
- 274 名前:132人目の素数さん [04/08/09 01:31]
- >>272
仮定が偽だから、「今は」確かに正しい。 でも、>>272を遺伝子操作で鳥にした瞬間、その文は偽になる。
- 275 名前:132人目の素数さん [04/08/09 01:43]
- 遺伝子操作で人間を鳥にできるころには、
飛びながら月まで行く方法が確立されてるに違いないので いずれにしろ真
- 276 名前:132人目の素数さん [04/08/10 06:37]
- つまりは無意味なことの羅列だったな
- 277 名前:132人目の素数さん mailto:sage [04/08/10 21:19]
- 分配法則
- 278 名前:132人目の素数さん [04/08/17 18:53]
- >>277
自明
- 279 名前:132人目の素数さん [04/08/17 19:32]
- 外積の分配法則。
自明に見えるけど、定義からちゃんと証明しようとすると非常に難しい。 外積の定義からちゃんと証明出来る人は少ないはず。 足達忠治(漢字違ったらスマソ)の「ベクトル解析」が一番分かりやすい説明(図説)らしいけど、 その説明を見ても理解するのに丸一日以上かかる。
- 280 名前:132人目の素数さん [04/08/17 20:20]
- >>279
お前今井か??
- 281 名前:132人目の素数さん [04/08/17 20:22]
- 今井ではないが今井は知っている
- 282 名前:132人目の素数さん [04/08/17 20:54]
- 911
- 283 名前:279 [04/08/17 20:55]
- >>280
違うけど。 3次元ベクトルの外積 a×b (a, bは3次元ベクトル)の定義を、 絶対値がaとbを2辺に持つ平行四辺形の面積の値に等しく、 向きはaからbに右ねじを回したときの進行方向と定義すれば、 a×(b+c) = a×b+a×c を証明するのが非常に困難。 もちろん、演算子×を (x, y, z)×(X, Y, Z) ≡ (yZ-Yz, zX-Zx, xY-Yx) と定義すれば何も問題は起こらないけど。
- 284 名前:132人目の素数さん mailto:sage [04/08/17 21:02]
- その二つの定義が同値であるということを証明すれば終わりということ?
- 285 名前:283 [04/08/17 21:13]
- >>284
それで終わり。ただ、その「終わり」までは一筋縄では行かない。 定義が図によるものである以上は、図で証明する必要があると思うけど。 そして、図による証明は、「ベクトル解析」以上にコンパクトな証明はないと思う。 もっとシンプルな証明がありそうなものだけど・・・。 ちなみに、図形による定義より a×b = -b×a i×j=k, j×k=i, k×i=j (i, j, kはそれぞれ、x, y, z方向の単位ベクトル) はすぐに言えるけど、x, y, z, X, Y, Z∈R のとき、 (xi+yj+zk)×(Xi+Yj+Zk) = xi×(Xi+Yj+Zk)+(ry とは出来ない(分配法則が証明されていないから)。
- 286 名前:132人目の素数さん mailto:sage [04/08/18 14:36]
- 個人的に最強はやはりジョルダンの閉曲線定理。
- 287 名前:132人目の素数さん [04/08/19 00:28]
- 小平もかつて文芸春秋に書いていたように、
ジョルダンの閉曲線定理。 は全然当たり前でない。
- 288 名前:132人目の素数さん [04/08/26 08:03]
- 784
- 289 名前:239 [04/08/26 08:10]
- なんか気になったことがあります。
なんで、 √4=±2じゃないんですか?
- 290 名前:132人目の素数さん mailto:sage [04/08/26 08:49]
- >>285
「ベクトル解析」による証明ってどんなの? 漏れは図による証明で感心したけど ここに描くには余白がない
- 291 名前:132人目の素数さん mailto:sage [04/08/26 15:07]
- >>289
定義
- 292 名前:132人目の素数さん mailto:sage [04/08/26 16:48]
- >>289
x^2 = y x = sqrt(y) or -sqrt(y)
- 293 名前:132人目の素数さん [04/09/01 12:41]
- 単に当たり前
- 294 名前:132人目の素数さん [04/09/01 16:21]
- >>289
√4>0ってのがわかればあきらか。
- 295 名前:132人目の素数さん [04/09/07 19:17]
- 923
- 296 名前:132人目の素数さん [04/09/12 13:13:33]
- 939
- 297 名前:132人目の素数さん [04/09/12 13:14:37]
- 関数論では √4=±2 だろ。
- 298 名前:132人目の素数さん mailto:sage [04/09/12 16:21:08]
- >>297
確かに多値関数として扱う場合もあるよね。
- 299 名前:132人目の素数さん [04/09/13 19:49:31]
- 676
- 300 名前:132人目の素数さん mailto:sage [04/09/15 19:38:30]
- 二年一時間。
- 301 名前:132人目の素数さん [04/09/18 22:59:01]
- 毎度のヴァカか
- 302 名前:132人目の素数さん [04/09/24 10:38:50]
- 152
- 303 名前:132人目の素数さん mailto:sage [04/09/24 21:27:15]
- >>287
これ最強かな。 他にある?
- 304 名前:132人目の素数さん [04/09/29 17:59:31]
- 259
- 305 名前:132人目の素数さん [04/09/29 19:37:08]
- 円と直線の接点にむけて中心から線をひくと直角をなすっての。
昔背理法でどうにか証明したものだけど、 もっとシンプルになる?
- 306 名前:132人目の素数さん [04/09/29 19:57:28]
- ワイエルストラスの定理って結構証明難しくないか?
- 307 名前:132人目の素数さん mailto:sage [04/09/29 20:05:06]
- >ワイエルストラスの定理って結構証明難しくないか?
ってどれ?いっぱいありそうだけど。
- 308 名前:132人目の素数さん [04/09/30 16:43:22]
- >>307
一番最初に習う奴。
- 309 名前:132人目の素数さん mailto:sage [04/09/30 17:03:59]
- 多項式近似定理?
- 310 名前:132人目の素数さん mailto:sage [04/09/30 17:37:35]
- 「一筆書きができる」ことの必要十分条件は、
「奇点が0個または2個である」。 このこと自体は小学校の教科書にも載っていたような気がするが、 図形とかグラフはきちんと証明しようとしたら、準備が大変。
- 311 名前:132人目の素数さん [04/10/02 13:39:47]
- >>307>>309
優級数の定理、予備定理、・・・
- 312 名前:132人目の素数さん mailto:sage [04/10/02 13:51:26]
- ワイエルシュトラスの定理で一番最初にならうやつというのを言い当てるのは
結構難しい問題だな。
- 313 名前:数学科布施 ◆FUSEz5Eqyo mailto:http://blog.livedoor.jp/fuse3/ [04/10/02 13:55:11]
- 有界列は収束する部分列をもつ
かな
- 314 名前:132人目の素数さん mailto:sage [04/10/02 13:59:22]
- >310
必要条件は簡単だけど、十分条件が面倒かな?
- 315 名前:132人目の素数さん [04/10/06 23:32:18]
- 集合、A、Bに対して、AからBへの単射およびBからAへの単射がともに存在する時、AとBの濃度は等しい。
(ベルンシュタインの定理) 一見当たり前。 でも証明は複雑。
- 316 名前:132人目の素数さん [04/10/07 03:18:34]
- 403
- 317 名前:132人目の素数さん mailto:sage [04/10/07 20:59:56]
- >>315
可算集合列の和を使わないスマートな証明がある。わかりやすいかどうかは 知らんが、証明が短くなることは確か。
- 318 名前:132人目の素数さん mailto:sage [04/10/07 21:12:53]
- >>317
かいてたもれ。
- 319 名前:132人目の素数さん mailto:sage [04/10/07 22:24:55]
- >>318
(J.Dieudonne, _Foundations of Modern Analysis_ の問題に載ってた。) f:A→B、g:B→Aを単射とする。Aの冪集合P(A)の部分集合Kを K = {M⊂A: M⊃(A - g(B))∪g(f(M))} と定義する。ここでA∈K。そこでKに属する集合の共通分を S = ∩_{M∈K} M とする。S=φでもかまわない。今 C = (A - g(B))∪g(f(S)) とおく。定義から S⊃(A - g(B))∪(∩_{M∈K} g(f(M))) で、g, fが単射だから、 ∩_{M∈K} g(f(M)) = g(f(∩_{M∈K} M)) = g(f(A)) よって S⊃(A - g(B))∪g(f(A)) = C. (1) 従ってまたCの定義から g(f(C))⊂g(f(S))⊂C. すなわち、 C⊃(A - g(B))∪g(f(C)) でC∈K。Sの定義からC⊃S。(1)と併せてS=C, すなわち S = (A - g(B))∪g(f(S)). すると、 A - S = A - ((A - g(B))∪g(f(S))) = g(B) - g(f(S)). gが単射だから、 A - S = g(B - f(S)). (2) そこでS上でfと一致し、A - S上でg^{-1}と一致するAからBヘの写像を hとすれば、(2)からhは全単射。
- 320 名前:132人目の素数さん mailto:sage [04/10/07 22:28:45]
- >>319
ごめん。タイプミスが二箇所。 > ∩_{M∈K} g(f(M)) = g(f(∩_{M∈K} M)) > = g(f(A)) g(f(A))はg(f(S))の間違い。 > S⊃(A - g(B))∪g(f(A)) = C. (1) こいつもg(f(A))はg(f(S))の間違い。
- 321 名前:132人目の素数さん [04/10/10 16:36:22]
- f:A→B g:B→A f、g:単射と仮定する。
Aの元aをa1、a2、・…、an・…と順番に並べる。 Bの元bも同様に並べる。 fをf(an)=bnと定義する。 gをg(bn)=anと定義する。 fとgはwel-def。 f(g(bn))=f(an)=bn となり、fg=1B よって、仮定とあわせて、 f:全単射。 〃
- 322 名前:132人目の素数さん mailto:sage [04/10/10 18:37:55]
- ↑なにこれ?
- 323 名前:132人目の素数さん mailto:sage [04/10/10 20:13:44]
- >>322
整列定理を使ったBernsteinの定理の証明のつもりでないの? 激しく間違ってるけど。 Zornの補題を使った証明もあるね。>>319は選択公理を使わない ところがミソ。
- 324 名前:あぼーん mailto:あぼーん [あぼーん]
- あぼーん
- 325 名前:LettersOfLiberty ◆rCz1Zr6hLw [04/10/11 13:43:05]
- Re:>324 お前何やってんだよ?
- 326 名前:132人目の素数さん [04/10/15 23:56:42]
- 996
- 327 名前:132人目の素数さん [04/10/16 19:45:43]
- 定積分と面積の関係
- 328 名前:132人目の素数さん mailto:sage [04/10/16 20:16:53]
- 最小値≦最大値
- 329 名前:132人目の素数さん [04/10/19 07:33:04]
- >>328
自明
- 330 名前:132人目の素数さん [04/10/19 09:44:58]
- >>327
証明も何も定義だろ。 厨房か?
- 331 名前:LettersOfLiberty ◆rCz1Zr6hLw [04/10/19 12:16:14]
- 下限≦上限
- 332 名前:LettersOfLiberty ◆rCz1Zr6hLw [04/10/19 12:18:28]
- [>331]は全順序集合で完備束のときは明らか。
一般の順序集合の部分集合で、下限と上限を持つときはどうだろう?
- 333 名前:LettersOfLiberty ◆rCz1Zr6hLw [04/10/19 12:19:10]
- というか、これも推移律から明らかだな。
- 334 名前:132人目の素数さん [04/10/19 12:29:16]
- >>331
閉区間 [0, 1] で、空集合の上限は 0, 下限は 1 で不成立
- 335 名前:LettersOfLiberty ◆rCz1Zr6hLw [04/10/19 12:33:11]
- Re:>334 それもそうだな。空でない集合なら成立する。
- 336 名前:132人目の素数さん [04/10/19 20:13:20]
- 4色定理
『いかなる地図も、隣接する領域が異なる色になるように塗るには4色あれば十分である』
- 337 名前:132人目の素数さん [04/10/20 10:16:13]
- コンピュータによる証明など証明とは認めん
- 338 名前:132人目の素数さん [04/10/20 10:44:07]
- 5色定理
『いかなる地図も、隣接する領域が異なる色になるように塗るには5色あれば十分である』
- 339 名前:132人目の素数さん [04/10/23 14:45:04]
- これならコンピューターなしでも証明できる
- 340 名前:132人目の素数さん mailto:sage [04/10/23 22:41:16]
- πの無理数性とか。π=3.1415926・・・の表示を考えれば、無理数であることは明らかっぽいけど、
実際の証明はややこしい。
- 341 名前:132人目の素数さん [04/10/24 01:22:21]
- >>285
>定義が図によるものである以上は、図で証明する必要があると思うけど。 思わない。
- 342 名前:132人目の素数さん [04/10/24 01:24:21]
- >>315
>(ベルンシュタインの定理) >一見当たり前。 >でも証明は複雑。 んなことない。極めて自然な証明。
- 343 名前:132人目の素数さん mailto:sage [04/10/24 01:48:26]
- >>336
四面体を転がせば?
- 344 名前:↑ mailto:sage [04/10/24 02:07:37]
- ?
- 345 名前:132人目の素数さん mailto:sage [04/10/24 16:09:40]
- 四面楚歌
- 346 名前:132人目の素数さん [04/10/30 22:30:48]
- 689
- 347 名前:132人目の素数さん mailto:sage [04/10/31 00:22:48]
- 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請
管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 管理者不在スレッド削除要請 (省略されました・・全てを読むにはここを押してください)  ̄ ̄
- 348 名前:132人目の素数さん [04/11/05 05:00:19]
- 784
- 349 名前:132人目の素数さん [04/11/05 08:05:03]
- >lim (・∀・) = (゚∀゚)
>・→゜ これは全く正しいように思えるが。 証明しろといわれると困るなw
- 350 名前:132人目の素数さん [04/11/05 08:17:06]
- >>349
横幅が狭まっているので正しくないと思う。
- 351 名前:132人目の素数さん mailto:sage [04/11/05 10:12:18]
- >lim (・∀・) = (゚∀゚)
>・→゜ 正しくは ・=゜ならば(・∀・) = (゚∀゚) だと思うがどうか? 【証明】 単なる文字の置き換え!
- 352 名前:132人目の素数さん [04/11/05 11:02:28]
- lim[x→1](x-2) = -1
ならば、 >lim (・∀・) = (゚∀゚) >・→゜ これも正しいはず!!
- 353 名前:132人目の素数さん mailto:sage [04/11/05 12:16:56]
- >>352
なぜ x=1ならば(x-2)=-1 がなりたつのに、わざわざlimを使うのか? どうせなら lim[x→0]((x+1)^2-1)/x = 2 とか書いたらどうだ?
- 354 名前:132人目の素数さん [04/11/05 13:49:15]
- ...,、 - 、∞
,、 ' ヾ 、;;;;;;; 丶,、 -、 /;;;;;;;;;;; οヽ ヽ;;;;\\:::::ゝ ∞ヽ/;;;;; i i ;;;; ヽ;;;;;;; __.ヽ ヽ::::ヽ ヽ:::::l i.ο l;;; ト ヽ ヽ .___..ヽο丶::ゝ r:::::イ/ l:::.| i ヽ \ \/ノノハ;;; ヽ l:/ /l l. l;;;;; i ヽ'"´__ヽ_ヽリ }. ', ', 'l. i ト l;;; レ'__ '"i#::::i゙〉l^ヾ |.i. l . l l lミ l /r'++::ヽ 'n‐/.} / i l l / ̄ ̄ ̄ ̄ ̄ ̄ ̄ l l l.ヾlヽ ヾ:‐° , !'" ♭i i/ i< このスレ相変わらず iハ l (.´ヽ _ ./ ◎ ,' ,' ' | 馬鹿ばかりだわねぇ・ |l. l ♭ ''丶 .. __ イ ∫ \_______ ヾ! ◎ l. //├ァ 、 ∫ /ノ! ◆ / ` ‐- 、 ◎ / ヾ_ ◎/ ≪≪ ,,;'' /:i /King命;` ∬/ ,,;'''/:.:.i\ というほど馬鹿じゃないわ。アホ
- 355 名前:working woman [04/11/05 13:53:57]
- >>353
違うでしょう?
- 356 名前:ChaosicSoul ◆/yaJbLAHGw [04/11/05 16:08:57]
- Re:>355 お前の言うことは分からぬ。
- 357 名前:132人目の素数さん mailto:sage [04/11/05 16:10:19]
- >>355
違わないけど
- 358 名前:working woman [04/11/05 16:16:21]
- センスが不足している人ね。
崩れないように頑張って。
- 359 名前:132人目の素数さん mailto:sage [04/11/05 17:21:43]
- >>358
つか、こいつ教えて君?
- 360 名前:working woman [04/11/06 21:00:19]
- >>357センス無いかたねぇ
1 - 2 = 1 - 2 よ。 その前のレス読んでないの?
- 361 名前:132人目の素数さん mailto:sage [04/11/06 21:10:53]
- 確かに>>353は極限をあまり理解していないようだ。
- 362 名前:132人目の素数さん [04/11/06 22:54:47]
- センスなし!
- 363 名前:132人目の素数さん [04/11/12 05:30:13]
- もうじき冬だから扇子はイラネ
- 364 名前:132人目の素数さん [04/11/16 08:11:59]
- 212
- 365 名前:132人目の素数さん [04/11/22 00:24:26]
- 361
- 366 名前:132人目の素数さん mailto:sage [04/11/22 00:56:23]
- そのものが存在しないことの証明ってどうやればいいんだっけ?
たとえば、白いカラスがいないことを証明するには?
- 367 名前:132人目の素数さん [04/11/22 01:21:53]
- とりあえず、アルビノの血を抹殺してから証明をはじめましょう。
- 368 名前:ぼるじょあ ◆yBEncckFOU mailto:sage [04/11/22 02:37:49]
- (・3・) アルェー 存在⇒矛盾でいいYO
- 369 名前:132人目の素数さん mailto:sage [04/11/22 05:10:37]
- >>366
例えば 「からすは必ず黒い」 ならば、対偶を取って 「黒くなければからすではない」 で終了。
- 370 名前:132人目の素数さん [04/11/22 09:51:32]
- >>369
「からすは必ず黒い」を使ってしまっている時点でだめだと思うんだけど。
- 371 名前:132人目の素数さん [04/11/22 11:40:42]
- つまり白いカラスはいるかも知れないってことだな。例が悪いよ。
- 372 名前:132人目の素数さん mailto:sage [04/11/22 11:41:54]
- ものごっつう古典的な例だと思うが
- 373 名前:366 [04/11/23 14:37:30]
- 確かに例が悪かったかもしれない、というより白いからすって実在するんだよね。
存在する可能性のある対象を用いて考えてはいけないってことか。 となると証明できない気がしないでもない。
- 374 名前:132人目の素数さん [04/11/23 16:05:47]
- まず論理学の法則だけで現実の対象の性質を証明するのは不可能でそ。
- 375 名前:132人目の素数さん mailto:sage [04/11/23 16:12:23]
- となると、かの数学者が言った「万物は数である」というのは嘘か。
- 376 名前:132人目の素数さん [04/11/23 16:22:47]
- >>375
証明してください。
- 377 名前:132人目の素数さん [04/11/23 19:51:30]
- カラスの定義(白いものはからすといわない)
より明らか
- 378 名前:132人目の素数さん mailto:sage [04/11/23 20:37:21]
- >>375
万物はコンピュータで表現できる。 全てのコンピュータのデータは数である。 よって、万物は数である。 いや、言葉は文字にすることが出来、文字は数値で表すことが出来る。 よって、言葉で表現できる全てのものは数である。 正確には、いずれかの数に対応させることが出来る。
- 379 名前:132人目の素数さん [04/11/23 20:47:12]
- 問題は万物が記号に置き換わることをどうやって証明するかだな。
- 380 名前:132人目の素数さん mailto:sage [04/11/23 20:55:15]
- 考えてみれば、「万物」の定義が曖昧。
日常生活で目にするものであれば、言葉で表現できるから当然記号で表せる。 全ての存在を素粒子と考えれば、素粒子一つ一つに番号を付けていけば、 有限個の整数(=N)で全ての素粒子を表現できる。 また、全ての「もの」は、それらの組み合わせによって表すことが出来るから、 2^N 個の整数で表現できる。
- 381 名前:132人目の素数さん [04/11/23 21:12:05]
- 日常生活で目にするものが全て言葉で表現できることを論理的に(ry
- 382 名前:132人目の素数さん [04/11/24 20:23:32]
- 万物=オバンボン
- 383 名前:132人目の素数さん mailto:sage [04/11/25 18:31:48]
- >>381
経験的には、通常の言語能力があれば、日常生活で出くわすもので言葉で説明できないものを探す方が大変。 数学的に言えば、「もの」と認識できるものを、物心ついたときから順に番号を振ればいいだけ。 人は有限時間しか生きられないから有限の数字しか振ることが出来ない。 その番号を人類が共有して、無限時間生きたとしても、世界には高々有限個のものしか存在しないから、 全ての「もの」を数に対応させることが可能。
- 384 名前:132人目の素数さん mailto:sage [04/11/26 09:24:24]
- つまり記号で認識できるものを「万物」と定義する訳だな。
- 385 名前:伊丹公理 [04/12/03 13:33:58]
- 経験的と言う言葉をみだらに使うな。
経験をそのまま人客観的に伝えられるわけではない。 数学者に限らず、独創性は「人に伝えられないこと(経験)」 がもとになる。
- 386 名前:132人目の素数さん [04/12/03 19:04:14]
- 583
- 387 名前:132人目の素数さん [04/12/03 23:00:55]
- >>385
みだらに?
- 388 名前:132人目の素数さん mailto:sage [04/12/03 23:06:33]
- あはは。
無知が露呈しましたな。 名前変えろよ、「伊丹みだら」に。
- 389 名前:132人目の素数さん mailto:sage [04/12/03 23:09:21]
- どうも「みだりに」と言いたかった様だが、悲しいかな知能が低過ぎた。
- 390 名前:132人目の素数さん [04/12/04 18:55:03]
- はげ
- 391 名前:伊丹公理 [04/12/05 12:35:33]
- お前らよりはましだがな
- 392 名前:伊丹公理 [04/12/05 12:43:49]
- デパスはヤミ流通が多い割には余り効かんよ
- 393 名前:伊丹公理 [04/12/05 12:44:12]
- 誤爆失礼
- 394 名前:伊丹公理 mailto:sage [04/12/05 12:56:17]
- もういいっしょ
- 395 名前:132人目の素数さん mailto:sage [04/12/05 13:14:30]
- >>392
デパスが効くのは最初だけ。
- 396 名前:伊丹公理 [04/12/06 21:15:43]
- 誤爆ついでに。
ヤミ流通の1位はハルシオン、2位がデパス。 3位以下は常時入れ替わる。
- 397 名前:伊丹公理 [04/12/06 21:19:55]
- なお、米国ではフルニトラゼパム(商品名ロヒプノール、サイレース等)が
上位に来ている。その他ロルメタゼパム等。その他メジャーも結構出ている。
- 398 名前:132人目の素数さん [04/12/13 05:32:42]
- 710
- 399 名前:132人目の素数さん [04/12/13 19:25:17]
- 1+1=2の証明
- 400 名前:132人目の素数さん [04/12/13 19:27:09]
- 1+1=2の証明分かる人います?
- 401 名前:BlackLightOfStar ◆ifsBJ/KedU [04/12/13 20:15:36]
- Re:>400 加法はどのように定義されているのかな?
- 402 名前:伊丹公理 [04/12/13 20:33:46]
- >>400
science3.2ch.net/test/read.cgi/math/1047608164/149 マルチ?
- 403 名前:132人目の素数さん [04/12/21 04:02:54]
- 213
- 404 名前:132人目の素数さん [04/12/26 11:48:35]
- 464
- 405 名前:132人目の素数さん mailto: [04/12/29 08:47:42]
- 教えて
- 406 名前:132人目の素数さん mailto:sage [05/01/26 22:51:38 ]
- 証明
ペアノの公理が成り立つと仮定する。 ペアノの公理では自然数は次の5条件を満たす。 1. 自然数 0 が存在する。 2. 任意の自然数 a にはその後者 (successor)、suc(a) が存在する 3. 0はいかなる自然数の後者でもない(0 より前の自然数は存在しない)。 4. 異なる自然数は異なる後者を持つ:a ≠ b のとき suc(a) ≠ suc(b) となる。 5. 0 がある性質を満たし、a がある性質を満たせばその後者 suc(a) もその性質を満たすとき、すべての自然数はその性質を満たす。 ここで、公理1より、自然数0の後者suc(0)を1と定義し、また自然数1の後者(公理4から、suc(0)≠1)suc(1)を2と定義する 即ち、suc(0)=1, suc(1)=2 ・・・(1) ここで、公理5から、任意の自然数aの後者suc(a)=a+1であるような演算+を定義する。 また、定義から任意の自然数の後者は上記の性質を満たすから、suc(a+1)=(a+1)+1 この式は、定義から、任意の自然数に対して成立するから、suc(1)=1+1 ・・・(2) (1),(2)から、1+1=2 証明終了
- 407 名前:修正 [05/01/26 22:58:05 ]
- ここで、公理5から、任意の自然数aの後者suc(a)=a+1であるような演算+を定義する。
を ここで、自然数0の後者suc(0)が0+1であるような演算+を定義する。 公理5から、上記の性質は任意の自然数で成立し、次の式が成立 suc(a)=a+1 に修正 追加 1+2等は、suc(a+1)=a+1+1のaに1を入れて、1+1=2を使って...というように任意の自然数同士の加算が定義できる
- 408 名前:132人目の素数さん mailto:sage [05/01/26 23:27:37 ]
- 自然数0の後者suc(0)が0+1であるような関係+1を定義する。
のほうが自然かな?意見求む
- 409 名前:132人目の素数さん mailto:sage [05/01/27 01:10:36 ]
- >ここで、自然数0の後者suc(0)が0+1であるような演算+を定義する。
>公理5から、上記の性質は任意の自然数で成立し、次の式が成立 >suc(a)=a+1 こういう定義の仕方では、そのような演算がwell-definedかどうか わからないのでダメ。 >自然数0の後者suc(0)が0+1であるような関係+1を定義する。 +1は関係ではなく、単項演算、もしくは1変数函数。
- 410 名前:409 mailto:sage [05/01/27 01:32:43 ]
- 2項演算+を、以下を満たす演算として定義する。
a+0 = a a+suc(b) = suc(a+b) すると、任意のaに対し a+1 = suc(a) となる(要証明)。 故に、1+1=suc(1)=2。(終) ※要は、+の定義が1つ足らないのと、どうせそこまでやるなら 「公理5から次の式が成立suc(a)=a+1」なんて横着せずに ちゃんとやろうぜ、ってだけです。
- 411 名前:132人目の素数さん [05/02/02 20:43:06 ]
- >>72
ヘアーの定理 外人はブロンドでパイパンである。
- 412 名前:132人目の素数さん [05/02/02 23:11:22 ]
- 分数の割り算はひっくりかえせばできるということ
学校の先生が2時間かければできるっていってた
- 413 名前:132人目の素数さん mailto:sage [05/02/02 23:41:46 ]
- >>412
(5/7)÷(2/3) = (5/7)×(3/2) ÷ (2/3)×(3/2) = (5/7)×(3/2) ではダメ?
- 414 名前:132人目の素数さん mailto:sage [05/02/03 01:35:24 ]
- >>412
そもそも日本語自体がおかしいが、言わんとしていることを くみとった上でレスすると、、、 それは定理じゃない。 除算の定義でしょ。(除算:=逆元を乗算)
- 415 名前:132人目の素数さん mailto:sage [05/02/04 10:47:30 ]
- >lim (・∀・) = (゚∀゚)
>・→゜ ここで、演算子(x∀x)x∈K(Kは体)をx×x^-1によって定義すると ゜=0のとき0^-1は定義されていないから、右辺は意味を持たない。 したがって、一般には正しくない。
- 416 名前:BlackLightOfStar ◆ifsBJ/KedU [05/02/04 22:41:33 ]
- Re:>415 位相について述べられていないから、左辺は意味を持たない。
- 417 名前:132人目の素数さん [05/02/04 23:21:49 ]
- ∫exp(ikx)/2πdk = δ(x)で定義されるδ(x)は
∫f(x)δ(x-a)dx = f(a)を満たす。
- 418 名前:132人目の素数さん [05/02/05 11:34:05 ]
- ハミルトンケーリーの定理で行列Aの固有値が全て異なるときは、φ(A)×X(固有ベクトルを並べた行列)=0でXは逆行列を持つから簡単に
φ(A)=0が分かるが、一般の場合もこんな感じに簡単にできないんですか?大1
- 419 名前:132人目の素数さん [05/02/05 23:40:06 ]
-
柱体の体積=底面積×高さ なんか感動した。
- 420 名前:132人目の素数さん mailto:sage [05/02/06 00:28:56 ]
- Fubiniの定理
- 421 名前:BlackLightOfStar ◆ifsBJ/KedU [05/02/06 21:27:39 ]
- 直積測度の存在と一意性。
- 422 名前:132人目の素数さん mailto:sage [05/02/07 16:15:41 ]
- >>420-421
復習してて本当に吐きそうになったことがある。
- 423 名前:132人目の素数さん [05/02/10 18:40:06 ]
- >>421
直積測度はある意味で積分と同じだからな。
- 424 名前:BlackLightOfStar ◆ifsBJ/KedU [05/02/10 19:50:53 ]
- Re:>423 Riemann重積分のときと同じということか?
とにかく私が知っているのは、直積因子になる空間がσ-有限の場合の直積測度の存在と一意性だ。
- 425 名前:132人目の素数さん [05/02/18 02:04:13 ]
- 234
- 426 名前:132人目の素数さん [05/02/27 10:47:29 ]
- 845
- 427 名前:132人目の素数さん [05/02/27 18:34:41 ID:sPOsHw1Z BE:8167924- ]
- ゾロ目の問題。
ゾロ目を「2桁以上で、すべての桁が同じ数字である自然数」と定義する。 (1)aを十進法のゾロ目としたとき、a=p^q(p、qは2以上の整数)となるaは存在するか否か。 (2)n進法において、a=p^qとなるaが存在するnについて法則を示せ。 漏れが考えたけど証明できないし、ググっても見つからない…orz
- 428 名前:132人目の素数さん [05/02/27 19:04:43 ID:sPOsHw1Z BE:73505489- ]
- あ。このスレは「一見当たり前のように思うが(ry」でしたね。
「p^q(p、qは2以上の整数)の形で表せる十進法のゾロ目は存在しない」 ことが「一見当たり前」のように思えるのに…ということです。 この問題を二進数にしたものですら私には解けませんでした。 (3)(2^a)-1=p^q(a、p、qは2以上の整数)となるaは存在するか否か。 分かる方がいたら証明おながいします。スマソ。
- 429 名前:132人目の素数さん [05/02/27 19:16:23 ]
- >>428
Catalanは解決され取るがな
- 430 名前:132人目の素数さん [05/03/10 06:26:01 ]
- 685
- 431 名前:132人目の素数さん mailto:sage [05/03/11 13:00:39 ]
- ヘヴィサイド関数の微分
- 432 名前:132人目の素数さん [05/03/21 01:47:39 ]
- 418
- 433 名前:132人目の素数さん [2005/03/21(月) 19:20:52 ]
- ファンデルワールスの式の厳密解(物理)。
- 434 名前:132人目の素数さん mailto:sage [2005/03/21(月) 20:17:46 ]
- >>433
解いてみよ
- 435 名前:132人目の素数さん [2005/03/21(月) 21:15:28 ]
- 物理でさぁ、逆自乗則ってあるじゃん。万有引力とかクーロン力とか。
あれがわかんないんだけど。
- 436 名前:132人目の素数さん [2005/03/22(火) 13:13:41 ]
- Golod Ring??
- 437 名前:132人目の素数さん mailto:sage [2005/03/22(火) 15:42:33 ]
- >>435
空間に等方的(均等)に効果が広がるために効果源を中心とする球の表面積に比例して 効果が減衰するようなものは、(球の表面積は中心からの距離つまり半径の自乗に比例 するため)距離の逆自乗に比例して効果が減衰することになる。
- 438 名前:132人目の素数さん [2005/04/03(日) 22:32:17 ]
- 925
- 439 名前:132人目の素数さん [2005/04/22(金) 08:25:16 ]
- 118
- 440 名前:132人目の素数さん [2005/05/07(土) 19:53:29 ]
- 412
- 441 名前:132人目の素数さん [2005/05/27(金) 04:23:23 ]
- 519
- 442 名前:132人目の素数さん [2005/05/27(金) 09:04:05 ]
- 「安心して子育てできる環境、女性、主婦の立場からの政治。」
と唱えながら、 韓国ビザ免除、中国ビザ全土拡大 公約放棄、ハマー4つ、マンセー
- 443 名前:132人目の素数さん [2005/06/22(水) 18:16:06 ]
- 619
- 444 名前:132人目の素数さん [2005/06/22(水) 21:10:20 ]
- 重力は有限距離にしか働かないのだよ。
- 445 名前:132人目の素数さん mailto:sage [2005/06/22(水) 21:28:38 ]
- P=NP問題
- 446 名前:132人目の素数さん mailto:sage [2005/06/22(水) 21:53:20 ]
- lim[n→0](sinx/x)ってグラフで見ると直感的に分かるのに証明じゃ面倒だよな
- 447 名前:132人目の素数さん mailto:sage [2005/06/22(水) 22:22:38 ]
- そんなの極限値の問題の大半にいえる気がする.
- 448 名前:132人目の素数さん mailto:sage [2005/06/22(水) 22:53:34 ]
- P=NPを「当たり前のように思う」感覚が俺にはわからん。
- 449 名前:132人目の素数さん mailto:sage [2005/06/22(水) 23:28:07 ]
- むしろP≠NPの方が自然っぽい。
- 450 名前:132人目の素数さん [2005/07/25(月) 01:07:12 ]
- 502
- 451 名前:132人目の素数さん mailto:sage [2005/08/05(金) 20:07:18 ]
- 336
- 452 名前:132人目の素数さん mailto:sage [2005/09/15(木) 18:38:30 ]
- 三年。
- 453 名前:132人目の素数さん [2005/09/16(金) 02:55:46 ]
- age
- 454 名前:132人目の素数さん [2005/09/16(金) 17:18:29 ]
- >一見当たり前のように思うが証明が難しい定理
ペアノ算術で 1.+が結合法則を満たすという定理 2.×が結合法則を満たすという定理 3.+が交換法則を満たすという定理 4.×が交換法則を満たすという定理 ちなみに上記はどれも帰納法抜きの ロビンソン算術では証明できない。
- 455 名前:132人目の素数さん [2005/09/18(日) 16:11:15 ]
- ヒルベルトの第三問題
「底面積と高さの等しい四面体の体積は等しいか?」 ちょwww超簡単www
- 456 名前:132人目の素数さん mailto:sage [2005/09/18(日) 19:55:18 ]
- ( ´д)ヒソ(´д`)ヒソ(д` )ヒソ
- 457 名前:132人目の素数さん mailto:sage [2005/10/08(土) 13:19:55 ]
- 392
- 458 名前:132人目の素数さん mailto:sage [2005/11/18(金) 09:39:18 ]
- 42
- 459 名前:132人目の素数さん [2005/12/02(金) 19:50:27 ]
- >>220
詭弁術としては面白い。 「飛ぶ矢は飛ばず」より上出来。
- 460 名前:132人目の素数さん [2005/12/03(土) 11:20:47 ]
- ロピタルの定理と平均値の定理
- 461 名前:132人目の素数さん [2005/12/03(土) 12:00:15 ]
- 積分が微分の反対になる理由
- 462 名前:132人目の素数さん [2005/12/03(土) 12:00:58 ]
- 大学3年で習得できた代数学の基本定理はそれを理解したときちょっと嬉しかった。
- 463 名前:132人目の素数さん mailto:sage [2005/12/03(土) 13:25:05 ]
- >>459
詭弁であることを証明するのは難しそうだね。 誰か証明して!
- 464 名前:132人目の素数さん [2005/12/23(金) 03:18:13 ]
- 1+1=2
- 465 名前:132人目の素数さん [2005/12/26(月) 01:59:35 ]
- (´・ω・`)
- 466 名前:132人目の素数さん mailto:sage [2005/12/26(月) 17:43:36 ]
- >>463
m9(^Д^)
- 467 名前:132人目の素数さん mailto:sage [2006/01/02(月) 03:47:59 ]
- 740
- 468 名前:AGE男 ◆9ZsPktrH52 [2006/02/02(木) 00:29:27 ]
-
∧ ∧ <*`ω´ *> 良スレアガレ ( ) v v ふぁびょいんっ 川 ( ( ) )
- 469 名前:132人目の素数さん [2006/02/02(木) 10:05:33 ]
- >>243
『架空の存在』は存在するか? 動物園でペンギンと一緒にカッパがスイスイしてたら可愛いと思うんだよ。 UFO焼きそばは実在する UFO焼きそばにUFOは使われていない UFOは実在する 動物園でUFOがフワフワしてたら可愛いと思うんだよ。 焼きそばを餌付けしたいぃ〜
- 470 名前:132人目の素数さん mailto:sage [2006/02/05(日) 08:51:50 ]
- 441
- 471 名前:132人目の素数さん [2006/03/01(水) 19:36:46 ]
- 三平方の定理の逆 という定理の証明は?
どんな証明方法が挙げられる?
- 472 名前:132人目の素数さん [2006/03/01(水) 20:00:53 ]
- 教科書嫁
- 473 名前:132人目の素数さん [2006/03/01(水) 20:04:44 ]
- >>472
おまいは空気を嫁
- 474 名前:132人目の素数さん mailto:sage [2006/03/02(木) 10:08:33 ]
- >>471
a^2+b^2=c^2をみたす正の整数a,b,cがある。 BC=a,CA=b,∠Cが直角の直角三角形ABCを考えるとABの長さは三平方の定理よりcである。 三辺の長さがa,b,cである三角形は△ABCと合同であるから直角三角形である。
- 475 名前:132人目の素数さん mailto:sage [2006/03/02(木) 10:10:55 ]
- 1行目訂正
a^2+b^2=c^2をみたす正の整数a,b,cがある→a^2+b^2=c^2をみたす正の数a,b,cがある
- 476 名前:132人目の素数さん [2006/03/02(木) 19:11:25 ]
- age
- 477 名前:132人目の素数さん [2006/03/02(木) 19:42:54 ]
- >>474
いわゆる、一致法というやつですな 他にも、あったような希ガス
- 478 名前:ヨッシー [2006/03/02(木) 21:01:03 ]
- ピタゴラスの定理(実際に三角書かないとできない)
及び ヘロンの公式(三角形の三辺の長さが解っていたらその面積も解る)
- 479 名前:132人目の素数さん mailto:sage [2006/03/02(木) 21:04:25 ]
- カエルの子はオタマジャクシ
- 480 名前:132人目の素数さん mailto:sage [2006/03/03(金) 00:27:45 ]
- カバリエリの原理とかハサミウチの原理とかが一番このスレにピッタリだと思う
でもなんで定理じゃなくて原理っていうんだろ
- 481 名前:132人目の素数さん mailto:sage [2006/03/03(金) 00:32:47 ]
- >>480
はさみうちの原理は、ε‐δ論法で証明できる基本的な代物ですな 初等数学を学習していない高校生から見たら、凄い証明なんだけどね カバリエリの原理も積分かな? これはよく分からん・・・
- 482 名前:132人目の素数さん mailto:sage [2006/03/12(日) 17:35:25 ]
- ホシュホシュ
- 483 名前:132人目の素数さん [2006/03/14(火) 04:51:14 ]
- age
- 484 名前:132人目の素数さん mailto:sage [2006/03/26(日) 14:25:37 ]
-
- 485 名前:132人目の素数さん mailto:sage [2006/04/15(土) 19:18:31 ]
-
- 486 名前:132人目の素数さん [2006/05/06(土) 21:27:03 ]
- age
- 487 名前:132人目の素数さん [2006/05/06(土) 22:02:00 ]
- 平行線の同位角は等しいことの厳密なる証明
- 488 名前:132人目の素数さん mailto:sage [2006/05/13(土) 22:04:02 ]
- 192
- 489 名前:132人目の素数さん mailto:sage [2006/05/26(金) 13:16:21 ]
- 875
- 490 名前:132人目の素数さん mailto:sage [2006/06/14(水) 22:01:28 ]
- まんこまんこまんこおおおおおおおおkingおおおおおおおおおおおおおおおおおおお
- 491 名前:GiantLeaves ◆6fN.Sojv5w [2006/06/15(木) 06:49:25 ]
- talk:>>490 何だよ?
- 492 名前:132人目の素数さん mailto:sage [2006/06/15(木) 17:01:51 ]
- >>491
レスおせーよking
- 493 名前:GiantLeaves ◆6fN.Sojv5w [2006/06/15(木) 22:51:24 ]
- talk:>>492 何だよ?
- 494 名前:132人目の素数さん [2006/07/18(火) 15:33:05 ]
- >>487
証明方法は、一致法ですか?(背理法の一種) だれか、証明うpしる
- 495 名前:132人目の素数さん [2006/07/18(火) 19:38:29 ]
- もまいら盲点を忘れてるぞ
π は な ぜ 3 . 1 4 ・ ・ ・ な の か
- 496 名前:132人目の素数さん [2006/07/18(火) 20:14:57 ]
- リーマン曲率が0だから。
- 497 名前:132人目の素数さん [2006/07/18(火) 20:19:09 ]
- SI単位系だから
- 498 名前:KingOfUniverse ◆667la1PjK2 [2006/07/19(水) 13:50:53 ]
- talk:>>495 とりあえず、16Arctan(1/5)-4Arctan(1/239)でも計算しようか?
- 499 名前:Geek ◆8MQVxjnUkg [2006/07/19(水) 13:54:41 ]
- >>498
それがπなの?
- 500 名前:132人目の素数さん [2006/07/19(水) 14:02:49 ]
- なぜか、一人円周率を知らない香具師が紛れ込んでるな
円周率とは、その名の通り、 円における直径と円周の比率のことだ 評価してやれば(不等式で挟む)近似値は求められる つまり円に内接する多角形や外接する多角形の周囲の長さを その円の直径で割ってやるのだ(その際、計算しやすいように正多角形を用いる) 正確な値は極限で求めるしかない 有名な近似値は22/7とか355/113など >>498もその一種
- 501 名前:132人目の素数さん [2006/07/19(水) 14:06:26 ]
- >>498
マチンの公式
- 502 名前:132人目の素数さん [2006/07/19(水) 14:11:49 ]
- 一番多いのは正何角形で計算されてますか?
- 503 名前:132人目の素数さん [2006/07/19(水) 14:42:50 ]
- 3
- 504 名前:132人目の素数さん [2006/07/20(木) 18:42:14 ]
- >>502
正6角形 円周率を3とすると、正6角形=円となる
- 505 名前:132人目の素数さん [2006/07/20(木) 23:53:05 ]
- Eilenberg-ZilberをAcyclic Modelを使わないで証明する、なんてのは?
- 506 名前:132人目の素数さん mailto:sage [2006/07/28(金) 17:42:53 ]
- 529
- 507 名前:132人目の素数さん mailto:sage [2006/08/30(水) 16:04:46 ]
- 950
- 508 名前:132人目の素数さん mailto:sage [2006/08/30(水) 17:05:07 ]
- ジョルダンの曲線定理
- 509 名前:132人目の素数さん [2006/08/30(水) 18:44:43 ]
- age
- 510 名前:132人目の素数さん mailto:sage [2006/09/15(金) 22:38:30 ]
- 四年四時間。
- 511 名前:132人目の素数さん [2006/09/24(日) 17:29:33 ]
- 空集合ではない集合の可算無限個の積集合から、
少なくとも一つ要素を取り出すことが出来る。
- 512 名前:132人目の素数さん mailto:sage [2006/10/03(火) 02:00:00 ]
-
- 513 名前:132人目の素数さん mailto:sage [2006/11/13(月) 00:11:59 ]
- 441
- 514 名前:132人目の素数さん [2006/12/19(火) 01:40:43 ]
- 他のスレにもあるかと思うが
2→3→7→43→13→・・・ このようにして素数を作っていったときここにすべての素数が現れる、という予想。 うちの数学科の教授はリーマン予想なんかよりはるかに証明はムズイだろうといっていた。
- 515 名前:132人目の素数さん mailto:sage [2006/12/19(火) 04:50:51 ]
- >>514
7と13の間は11でなくて良いんで?
- 516 名前:132人目の素数さん [2006/12/19(火) 09:01:57 ]
- king の定理
- 517 名前:KingOfUniverse ◆667la1PjK2 [2006/12/19(火) 13:30:46 ]
- talk:>>516 私が神であることを証明せよ。
- 518 名前:大学生 [2006/12/19(火) 14:00:23 ]
- 2変数の連続であることの証明
- 519 名前:132人目の素数さん [2006/12/19(火) 14:01:46 ]
- フェルマーの最終定理
X^n+Y^n=Z^n (n>=3) となるのは存在しない
- 520 名前:132人目の素数さん [2006/12/19(火) 14:02:50 ]
- e^iπ +1=0
オイラーの等式
- 521 名前:007 [2006/12/19(火) 14:15:09 ]
- ゆだねなさい
おいらの定理
- 522 名前:132人目の素数さん [2006/12/19(火) 15:34:27 ]
- 彼女が出来る+別の娘が好きになる=泥沼
おいらの定理
- 523 名前:KingOfUniverse ◆667la1PjK2 [2006/12/19(火) 16:03:20 ]
- 女沼。
- 524 名前:132人目の素数さん mailto:sage [2006/12/19(火) 18:51:57 ]
- A,B:コンパクト⇒A×B:コンパクト
A,B:連結⇒A×B:連結 超ムズイってわけじゃないけど、見かけより手間がかかる。
- 525 名前:132人目の素数さん [2006/12/19(火) 20:20:32 ]
- 中間地の定理。
- 526 名前:132人目の素数さん [2007/01/20(土) 04:20:52 ]
- 平面上のジョルダン閉曲線のうちで、その曲線が囲む平面の領域の面積と
曲線の弧長の比が最大であるものは円周になる。
- 527 名前:132人目の素数さん mailto:sage [2007/01/20(土) 23:54:15 ]
- >505
> Eilenberg-ZilberをAcyclic Modelを使わないで証明する、なんてのは? Eilenberg-Zilber自体「一見当たり前」とは思えんのだが…
- 528 名前:132人目の素数さん [2007/01/21(日) 00:29:23 ]
- >>525
主張、証明共に自明
- 529 名前:132人目の素数さん mailto:sage [2007/01/21(日) 19:50:43 ]
- クリ☆ピアスの定理。
- 530 名前:132人目の素数さん mailto:sage [2007/01/24(水) 23:44:04 ]
- >>524
連結の方はそんな手間掛かんないんじゃないか。 cptの方は禿同だが。
- 531 名前:132人目の素数さん mailto:sage [2007/02/05(月) 17:35:56 ]
- 506
- 532 名前:132人目の素数さん mailto:sage [2007/03/11(日) 14:13:53 ]
- 433
- 533 名前:132人目の素数さん mailto:sage [2007/04/15(日) 21:22:31 ]
- 820
- 534 名前:132人目の素数さん [2007/04/24(火) 23:17:33 ]
- 中学生が証明を始めるという点ではフェルマーの最終定理
- 535 名前:132人目の素数さん [2007/04/24(火) 23:35:12 ]
- ダルブーの定理
- 536 名前:労働組合書記長@憲法違反バスター ◆4H/d9Ec1wI [2007/04/25(水) 00:22:37 ]
- χが実指標のときにL(1,χ)>0
これはメルテンスのうざいのでなくて,凄く短く証明可能
- 537 名前:132人目の素数さん [2007/04/25(水) 01:50:56 ]
- 実数は正か負か0のいずれかである
- 538 名前:132人目の素数さん mailto:sage [2007/04/28(土) 03:57:36 ]
- 証明が簡単だが、一見 当たり前に見えない定理
実数列{an},{bn},{cn}が ・an≦bn≦cn (n=1,2,…) ・Σ[i=1〜∞]ai,Σ[i=1〜∞]ciが存在する を満たすとき、Σ[i=1〜∞]biも存在する。
- 539 名前:132人目の素数さん [2007/05/11(金) 21:34:38 ]
- 円周角の定理。
どうやって証明すんの?
- 540 名前:132人目の素数さん mailto:sage [2007/05/11(金) 22:11:53 ]
- contest2004.thinkquest.jp/tqj2004/70105/other/imp003.html
- 541 名前:132人目の素数さん [2007/05/17(木) 16:59:20 ]
- 中間値の定理
- 542 名前:KingOfUniverse ◆667la1PjK2 [2007/05/17(木) 17:04:54 ]
- 連結集合の連続射による像は連結集合である。
- 543 名前:β ◆aelgVCJ1hU [2007/05/17(木) 22:51:02 ]
- ある関数が微分可能であれば逆関数も微分可能であることを証明できる人いる?
- 544 名前:132人目の素数さん [2007/05/17(木) 22:59:11 ]
- βぐらいにしか証明できないだろw
- 545 名前:KingOfUniverse ◆667la1PjK2 [2007/05/18(金) 11:01:22 ]
- 逆写像定理には何か前提条件があったはずだぞ。
- 546 名前:132人目の素数さん mailto:sage [2007/05/18(金) 11:11:41 ]
- >>539
homepage1.nifty.com/ishituka/math/sakuzu/2/ensyu.html 点を動かして実感してみ
- 547 名前:132人目の素数さん mailto:sage [2007/05/18(金) 11:25:00 ]
- >>542
証明難しいか?
- 548 名前:KingOfUniverse ◆667la1PjK2 [2007/05/18(金) 11:45:32 ]
- talk:>>547 連続写像の性質によって証明する。
- 549 名前:132人目の素数さん mailto:sage [2007/05/18(金) 11:52:04 ]
- 6以上の偶数は2つの素数の和で表される。
- 550 名前:132人目の素数さん mailto:sage [2007/05/18(金) 12:04:45 ]
- >>548
いやだから証明は簡単だろ?
- 551 名前:132人目の素数さん mailto:sage [2007/05/18(金) 12:07:17 ]
- >>550
kingがどの公理の位相を習ったかによるんじゃないか?
- 552 名前:132人目の素数さん [2007/05/18(金) 12:09:15 ]
- キングは点列による位相だろ
- 553 名前:KingOfUniverse ◆667la1PjK2 [2007/05/18(金) 12:20:06 ]
- talk:>>550 開集合の連続射による逆像が開集合であることを考えれば簡単だ。
talk:>>552 収束点列から定まる位相。
- 554 名前:β ◆aelgVCJ1hU [2007/05/19(土) 00:12:38 ]
- >>544
どういう意味だw
- 555 名前:132人目の素数さん [2007/05/19(土) 01:02:16 ]
- ある関数が微分可能でも逆関数は存在すら保証できないのだから
- 556 名前:132人目の素数さん mailto:sage [2007/05/19(土) 01:02:53 ]
- ある関数が微分可能でも逆関数は存在すら保証できないのだから微分可能もへったくれもない。
- 557 名前:β ◆aelgVCJ1hU [2007/05/19(土) 01:14:23 ]
- 逆関数が存在するとき を省いてしもーたわい
- 558 名前:132人目の素数さん mailto:sage [2007/05/19(土) 02:29:57 ]
- >>557
y=x^3でも考えてみな
- 559 名前:132人目の素数さん mailto:sage [2007/06/12(火) 01:58:08 ]
- どうせ何度も出てきているはずだがやっぱりジョルダンの閉曲線定理が圧倒的に一般の
人々の支持を集める、と思う。
- 560 名前:132人目の素数さん mailto:sage [2007/06/25(月) 13:49:22 ]
- 179
- 561 名前:132人目の素数さん [2007/06/26(火) 01:32:57 ]
- >>524
「超積と超準解析」で超準解析を使えば >A,B:コンパクト⇒A×B:コンパクト は簡単に示せると書いてあったの思い出した しかしその前の位相の諸概念を超準解析で記述する所が やたらと長かったんだけどね…上記の命題を示すだけなら面倒すぎる方法だ
- 562 名前:132人目の素数さん [2007/07/01(日) 16:22:01 ]
- 一見当たり前のように思うが証明が難しい定理か・・・
>>1がモテない定理とか?
- 563 名前:132人目の素数さん [2007/07/01(日) 19:17:17 ]
- >>1がモテない定理
自明でOK
- 564 名前:132人目の素数さん mailto:sage [2007/07/03(火) 06:09:22 ]
- 極限値の基本定理とか
lim[n→∞]anbn = lim[n→∞]an・lim[n→∞]bnなんて見るからに成り立ちそうだが証明は大学レベル
- 565 名前:132人目の素数さん mailto:sage [2007/07/08(日) 02:22:53 ]
- >>539だけどレスありがとう。
>>540 言われてみれば円周角と中心角の関係から 等しい弧に対する円周角は一定を示したことになるね。 今まで気付かなかった。恥ずかしい。 >>546 実感として違和感があったわけじゃないんです。 でもそのサイト面白いね。
- 566 名前:132人目の素数さん [2007/07/10(火) 22:56:35 ]
- S1の基本群はZに同型
- 567 名前:132人目の素数さん mailto:sage [2007/07/14(土) 04:21:49 ]
- チコノフの定理むずいね
- 568 名前:132人目の素数さん mailto:sage [2007/08/31(金) 13:41:47 ]
-
- 569 名前:132人目の素数さん mailto:sage [2007/09/15(土) 18:38:00 ]
- 五年。
- 570 名前:132人目の素数さん [2007/10/24(水) 11:48:45 ]
- age
- 571 名前:132人目の素数さん [2007/10/27(土) 21:24:11 ]
- 人間が簡単に想像出来るような閉曲線に対しては
ジョルダンの定理が成り立つ事を容易に証明出来る その意味では当たり前の定理なのかもしれない 他の定理達は色々拡張してやっと奇異な例をも対象にするというのに ジョルダンの定理だけは最初から奇異な例を含ませられている
- 572 名前:132人目の素数さん [2007/12/05(水) 23:58:57 ]
- >>571
「信州大学」「ミザール」でググレ
- 573 名前:132人目の素数さん [2007/12/08(土) 14:27:07 ]
- >>561
選択公理を使わないと、もっと手間がかかる。
- 574 名前:132人目の素数さん mailto:sage [2007/12/23(日) 01:09:40 ]
- 導関数を用いた「m+nC2=mC2+mC1×nC1+nC2」
まぁ所詮独学で証明できたものだからそこまで難しくないかも・・・
- 575 名前:132人目の素数さん mailto:sage [2007/12/23(日) 01:11:52 ]
- 少し訂正。
×導関数を用いた〜 ○導関数を用いて「m+nC2=・・・」の証明。
- 576 名前:132人目の素数さん [2008/03/11(火) 02:25:22 ]
- 単体分割に関する定理
- 577 名前:132人目の素数さん mailto:sage [2008/03/11(火) 03:33:42 ]
- 低脳文系は、これだから困る
- 578 名前:132人目の素数さん [2008/03/11(火) 05:10:12 ]
- と馬鹿駅弁が申しております。
- 579 名前:132人目の素数さん mailto:sage [2008/03/11(火) 07:33:26 ]
- ペアノの公理から、足し算の可換性を証明すること。
>>406, >>410 を参照。 足し算の結合性は、帰納法に素直にのるので簡単だが、可換性の 方はそうはいかない。
- 580 名前:132人目の素数さん [2008/03/11(火) 08:32:57 ]
- ベップス・ギュルダンの定理
- 581 名前:132人目の素数さん mailto:sage [2008/03/11(火) 11:57:13 ]
- 自由群の部分群は自由群
- 582 名前:132人目の素数さん [2008/03/11(火) 17:18:18 ]
- モーリーの定理
- 583 名前:β ◆aelgVCJ1hU [2008/03/11(火) 17:39:41 ]
- 円柱の1/3が円錐って、
円柱の中に底面共通の円錐がある形を考えて、 それを底面に平行な平面で切った時を考えればイイんだよな。
- 584 名前:132人目の素数さん mailto:sage [2008/03/12(水) 11:30:52 ]
- >>583
>>61
- 585 名前:132人目の素数さん mailto:sage [2008/03/12(水) 11:39:39 ]
- >>583
区間0〜1でのx^2の平均。
- 586 名前:132人目の素数さん mailto:sage [2008/05/05(月) 22:22:14 ]
- 615
- 587 名前:132人目の素数さん mailto:sage [2008/07/04(金) 08:30:35 ]
- 628
- 588 名前:132人目の素数さん [2008/07/04(金) 20:57:31 ]
- age
- 589 名前:132人目の素数さん mailto:sage [2008/07/05(土) 22:39:03 ]
- ヒポクラテスの定理
よく分からない。
- 590 名前:132人目の素数さん mailto:sage [2008/07/09(水) 23:13:53 ]
- 「Q.E.D.」
ja.wikipedia.org/wiki/Q.E.D._証明終了 blog.goo.ne.jp/take_14/e/d07201b7488bb8ca711a15a0da7f1707 readreview.blog.ocn.ne.jp/book1/2008/06/qed30_df35.html
- 591 名前:132人目の素数さん mailto:sage [2008/09/06(土) 21:07:04 ]
- 018
- 592 名前:132人目の素数さん mailto:sage [2008/09/07(日) 17:11:47 ]
- >>519
それ見て、当たり前とは思わないだろw
- 593 名前:132人目の素数さん mailto:sage [2008/09/07(日) 22:11:15 ]
- ここまでバナッハ・タルスキーなし
- 594 名前:132人目の素数さん mailto:sage [2008/09/08(月) 11:01:31 ]
- ↑スレタイ(特に前半部分)可算無限回読んで来い
- 595 名前:132人目の素数さん mailto:sage [2008/09/08(月) 11:13:09 ]
- ただし有限の時間内に読んで来い
- 596 名前:132人目の素数さん mailto:sage [2008/09/08(月) 20:38:17 ]
- 有限の時間内に無限回読む事は不可能
- 597 名前:132人目の素数さん mailto:sage [2008/09/09(火) 00:48:36 ]
- >>594
え?あれ当たり前だろwwwwwwwって思ったんだが・・・俺だけ?
- 598 名前:132人目の素数さん mailto:sage [2008/09/09(火) 07:38:41 ]
- yes
- 599 名前:132人目の素数さん mailto:sage [2008/09/09(火) 07:41:27 ]
- パラドックスというものは、「一見あたりまえ【ではないようにみえる】ことが証明出来てしまう」という命題だ。
だから「○○のパラドックス」と呼ばれるものは全てスレチw
- 600 名前:132人目の素数さん [2008/09/10(水) 21:18:27 ]
- age
- 601 名前:132人目の素数さん [2008/09/10(水) 23:49:44 ]
- 高校数学では定番と言っていいくらいの公式なんですが、どおやって証明すれば良いですか?どなたか教えて下さい。お願いします!
1/6(β-α)3乗 面積のです。
- 602 名前:132人目の素数さん mailto:sage [2008/09/10(水) 23:56:07 ]
- エスパー初級
- 603 名前:132人目の素数さん [2008/09/11(木) 00:26:54 ]
- 超スレチ
どおやってw
- 604 名前: ◆27Tn7FHaVY mailto:sage [2008/09/11(木) 00:29:36 ]
- 名前欄に「かな」とか入れておけば尚良かった
- 605 名前:132人目の素数さん mailto:sage [2008/09/17(水) 14:38:00 ]
- 六年一日二十時間。
- 606 名前:132人目の素数さん [2008/09/17(水) 20:02:10 ]
- age
- 607 名前:132人目の素数さん mailto:sage [2008/10/12(日) 20:37:39 ]
- ある3点を通る放物線は1つしかない
- 608 名前:132人目の素数さん mailto:sage [2008/10/14(火) 16:00:49 ]
- 1つ、または0じゃないの?
- 609 名前:132人目の素数さん [2008/10/15(水) 22:23:44 ]
- いかなる地図であろうと4色あれば塗り分けることができる
- 610 名前:132人目の素数さん mailto:sage [2008/10/15(水) 22:33:56 ]
- 川崎市麻生区には飛地があるわけだが
- 611 名前:132人目の素数さん mailto:sage [2008/10/17(金) 01:32:38 ]
- 定理じゃないが、符号や周期性を含めて一貫性のある角度の定義。
- 612 名前:132人目の素数さん mailto:sage [2008/10/17(金) 22:30:38 ]
- >>611
「定義」は証明するものじゃないだろw
- 613 名前:132人目の素数さん mailto:sage [2008/10/18(土) 02:45:42 ]
- だから定理じゃないと言ってるじゃん。
- 614 名前:132人目の素数さん mailto:sage [2008/11/19(水) 22:28:09 ]
- 461
- 615 名前:132人目の素数さん mailto:sage [2008/11/19(水) 23:18:56 ]
- >>613
何を勘違いしてるのかは分からないが定理≠定義
- 616 名前:132人目の素数さん mailto:sage [2008/11/20(木) 05:34:27 ]
- いや、どちらかというと
証明=誰もが納得する合理的な説明 と考えているのではないだろうか?
- 617 名前:132人目の素数さん mailto:sage [2008/11/27(木) 00:03:05 ]
- うるさい。
- 618 名前:132人目の素数さん [2008/12/14(日) 21:26:40 ]
- >>514
もうちょい詳しく頼む!
- 619 名前:132人目の素数さん [2008/12/14(日) 21:27:10 ]
- >>514
もうちょい詳しく頼む!
- 620 名前:132人目の素数さん [2008/12/16(火) 01:27:02 ]
- age
- 621 名前:132人目の素数さん [2008/12/16(火) 01:37:30 ]
- アーベル-ルフィニの定理
ゲーデルの不完全性定理
- 622 名前:132人目の素数さん mailto:sage [2008/12/16(火) 10:31:21 ]
- ヒルベルトですら数学の無矛盾性は証明できると思っていたのに
>>621はヒルベルト以上の数学センスを持ってるんだな
- 623 名前:132人目の素数さん [2008/12/16(火) 21:16:26 ]
- Jordanの曲線定理にきまっとるがな。あとは雑魚。このスレ終了。
- 624 名前:132人目の素数さん mailto:sage [2008/12/17(水) 03:52:32 ]
- 1+1=2であることの証明
- 625 名前:132人目の素数さん mailto:sage [2008/12/17(水) 12:42:41 ]
- >一見当たり前のように思うが証明が難しい定理
乗法の交換法則が成り立つことの証明
- 626 名前:132人目の素数さん mailto:sage [2008/12/17(水) 12:48:58 ]
- >>622
>ヒルベルトですら数学の無矛盾性は証明できると思っていたのに 実はゲーデルもはじめは無矛盾性の証明をしようと考えていたが その後、真偽の算術的定義からパラドックスが導けることに気づき 方針を転換したという。
- 627 名前:132人目の素数さん mailto:sage [2008/12/17(水) 12:56:24 ]
- >>495
>π は な ぜ 3 . 1 4 ・ ・ ・ な の か 数学科の学生に 「πの小数点以下2桁を確定するために アルキメデスの内接および外接正n角形の周 の方法を用いるとした場合、nがいくつ以上 であればよいか?」 と尋ねてごらん。即答できないから。
- 628 名前:132人目の素数さん mailto:sage [2008/12/17(水) 13:16:05 ]
- お前にとって、証明が難しい問題というのは
即答できない問題ということなのか。 それはまあ世の中ずいぶん証明が難しい問題だらけなんだな。
- 629 名前:132人目の素数さん mailto:sage [2008/12/17(水) 17:47:51 ]
- >>628
>お前にとって、証明が難しい問題というのは >即答できない問題ということなのか。 まあ、それはちょっとハードルが低いとは思うけどね。 >世の中ずいぶん証明が難しい問題だらけなんだな。 東大の入試問題で、似たようなのが出て 結構正答率が低いと聞いたがなw
- 630 名前:132人目の素数さん mailto:sage [2008/12/17(水) 20:32:45 ]
- 入試問題で、よくある論理パズルの中で高度な数学使ってる奴出されたら解けないやつの方が多いと思うよ
- 631 名前:132人目の素数さん mailto:sage [2008/12/17(水) 23:22:43 ]
- >>629
> 東大の入試問題で、似たようなのが出て > 結構正答率が低いと聞いたがなw 東大入試では即答できなくても、時間内に回答できれば正解。
- 632 名前:132人目の素数さん mailto:sage [2008/12/17(水) 23:23:43 ]
- >>630
> よくある論理パズルの中で高度な数学 高度な数学は あんまりないと思う。
- 633 名前:132人目の素数さん [2008/12/28(日) 15:47:36 ]
- m^n+1およびn^m+1が
10の倍数になる最小のn、mの組をあげよ。 パズルっぽくはないし高度でもないが、意外と難しい。 過去の東大入試問題です。
- 634 名前:132人目の素数さん [2008/12/28(日) 15:49:22 ]
- 下らない
そんなもの考えてなんになる
- 635 名前:132人目の素数さん mailto:sage [2008/12/28(日) 19:42:13 ]
- >>632
二進数使わないと解けない問題とか、意味のわからん論理パズル集めた本が家にあるんだ…
- 636 名前:132人目の素数さん mailto:sage [2008/12/28(日) 21:24:55 ]
- 二進数が高度な数学……???
- 637 名前:132人目の素数さん [2008/12/29(月) 01:06:03 ]
- >>633
n=m=9か?
- 638 名前:132人目の素数さん [2008/12/29(月) 01:09:57 ]
-
数学を得意とする人にこんなことを聞くのは申し訳ないんだが、 ちょっと疑問に思ったことがあったので聞きたい。 他のスレで拾ったんだが a=bなら a²=ab a²-b²=ab-b² (a+b)(a-b)=b(a-b) (a+b)=b a+a=a 2a=a 2=1 これってどういうこと何?
- 639 名前:132人目の素数さん [2008/12/29(月) 01:11:54 ]
- a=bを仮定したらa-b=0になるのに
a-bで割ってるからおかしくなる
- 640 名前:132人目の素数さん [2008/12/29(月) 03:28:42 ]
- >>639
なるほど。ありがとう。ちょっと目から鱗。
- 641 名前:132人目の素数さん mailto:sage [2008/12/29(月) 03:35:44 ]
- なんで数学できない人って人に聞くことばかりで
具体的な値を入れて考えようと思わないんだろうね。
- 642 名前:132人目の素数さん mailto:sage [2008/12/29(月) 05:43:18 ]
- 馬鹿だから
- 643 名前:132人目の素数さん mailto:sage [2008/12/29(月) 05:57:23 ]
- 国語が苦手なやつが辞書も引かないのと似たようなもの
- 644 名前:132人目の素数さん [2008/12/29(月) 08:29:41 ]
- >>618-619
2,3,7,43,13 3=2+1 7=2*3+1 43=2*3*7+1 13=2*3*7*43+1の最小の素因数 ってなってるからそれまで出た数を全部かけて1足して それの最小の素因数を求めてくんだと思う
- 645 名前:132人目の素数さん mailto:sage [2009/01/28(水) 19:19:17 ]
- 468
- 646 名前:132人目の素数さん mailto:sage [2009/01/30(金) 04:28:54 ]
- バナッハタルスキーパラドクス
- 647 名前:132人目の素数さん mailto:sage [2009/01/30(金) 04:39:18 ]
- バナッハ
- 648 名前:132人目の素数さん [2009/01/30(金) 17:20:09 ]
- age
- 649 名前:132人目の素数さん mailto:sage [2009/04/24(金) 08:55:20 ]
- 946
- 650 名前:132人目の素数さん mailto:sage [2009/06/19(金) 08:45:05 ]
- 013
- 651 名前:べ [2009/07/07(火) 16:54:34 ]
- agest
- 652 名前:132人目の素数さん [2009/07/09(木) 03:03:03 ]
- バナッハタルスキーを一見当たり前のように思うような奴とは友達になりたくないな
- 653 名前:132人目の素数さん [2009/07/09(木) 03:54:23 ]
- パップスギュルダンの定理
- 654 名前:「猫」∈社会の屑 ◆ghclfYsc82 mailto:sage [2009/07/09(木) 10:11:22 ]
- 「大学教授は偉い」っちゅう定理
「大学院生は優秀や」っちゅう定理 まだ他にもあるだろうけどな
- 655 名前:132人目の素数さん mailto:sage [2009/07/09(木) 20:23:15 ]
- 教授は偉いよ。 ジャンル限定だが。
院生は親が金持ちかそれなりに優秀のどちらか。
- 656 名前: ◆27Tn7FHaVY mailto:sage [2009/07/09(木) 23:45:34 ]
- 先生は偉い、ぐらいならいいと思うけどね
- 657 名前:132人目の素数さん [2009/07/10(金) 00:09:17 ]
- こいつ教授と院生に何か恨みでもあるんかね
- 658 名前:132人目の素数さん mailto:sage [2009/07/10(金) 00:11:47 ]
- ?
- 659 名前: ◆27Tn7FHaVY mailto:sage [2009/07/10(金) 00:12:25 ]
- 俺?
- 660 名前:132人目の素数さん [2009/07/10(金) 00:27:29 ]
- 猫のことだよ
- 661 名前: ◆27Tn7FHaVY mailto:sage [2009/07/10(金) 00:35:42 ]
- 了解
- 662 名前:132人目の素数さん [2009/07/11(土) 01:58:17 ]
- 俺院生だけど別にそんなに優秀じゃない。
親は貧乏ではないが金持ちってほどじゃない。
- 663 名前:132人目の素数さん mailto:sage [2009/07/11(土) 09:21:14 ]
- 優秀でもなければ、金もないのに
なんで院になんか行ってるんだ?
- 664 名前:132人目の素数さん [2009/07/11(土) 09:30:28 ]
- 猫はマスダいう定理はまだ誰も証明できてへんな。
- 665 名前: ◆27Tn7FHaVY mailto:sage [2009/07/11(土) 16:17:59 ]
- sinakute ii
- 666 名前:132人目の素数さん mailto:sage [2009/07/11(土) 16:29:40 ]
- モラトリアム
- 667 名前:132人目の素数さん mailto:sage [2009/07/11(土) 18:07:09 ]
- >>666
つまり金はあるんじゃないか。
- 668 名前:132人目の素数さん mailto:sage [2009/07/11(土) 18:11:20 ]
- 支払猶予期間だからむしろ金はないんじゃね?
- 669 名前:132人目の素数さん mailto:sage [2009/07/11(土) 19:38:39 ]
- その場合の支払いは金じゃなくて労働とか社会貢献だろ
- 670 名前:132人目の素数さん mailto:sage [2009/07/11(土) 21:54:10 ]
- 冗談が通じないタイプだな
- 671 名前:132人目の素数さん [2009/08/03(月) 09:06:44 ]
- 春木の定理ってどうやって証明するの?
欧米の高校生はみんな知ってるんだよね
- 672 名前:132人目の素数さん [2009/08/03(月) 15:06:09 ]
- Jordan-Schoenflies theorem:
Any homeomorphic image of a circle in R^2 bounds D^1.
- 673 名前:672 mailto:sage [2009/08/03(月) 15:11:28 ]
- 256に出ておった、トホホ。
- 674 名前:132人目の素数さん [2009/08/03(月) 16:32:23 ]
- サンカクスイの体積の3分の1×底面積の3分の1って何から来てるの?
レベル低くてすいません
- 675 名前:132人目の素数さん mailto:sage [2009/08/03(月) 16:35:10 ]
- ∫x^dx=x^3/3+C の1/3
- 676 名前:132人目の素数さん [2009/08/03(月) 16:49:15 ]
- 674ですが これはたしか小学校や中学校で習ったことなので微分や積分を使わずに証明することができると思うんですがどうですか?
一度自分で証明できた気がするんですけどすっかり忘れてしまって・・・・ 頭のいい人お願いします
- 677 名前:132人目の素数さん mailto:sage [2009/08/03(月) 16:51:37 ]
- >>675
x^dxってなんだよ
- 678 名前:132人目の素数さん mailto:sage [2009/08/03(月) 16:52:22 ]
- >>676
> 小学校や中学校で習ったことなので微分や積分を使わずに証明することができると思う まちがい。事実だけ教わって証明はしていない。
- 679 名前:132人目の素数さん [2009/08/03(月) 16:54:41 ]
- その証明簡潔に教えてください この前2時間くらいかけたんですが・・・・
- 680 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:04:00 ]
- >>679
高さhのときの錐の断面積を三平方の定理とか使って出して、 h+dhの断片の体積を出して、それをh方向に積分。
- 681 名前:132人目の素数さん [2009/08/03(月) 17:12:20 ]
- だから小学校や中学校の範囲内で証明お願いします
- 682 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:13:20 ]
- >>677
その位脳内補完しろ、カス
- 683 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:14:59 ]
- 直方体を三つの三角錐に分割するのを見た記憶がある.
- 684 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:16:46 ]
- >>676
あまり厳密な証明ではないが たとえば四角錐なら、ピラミッドのように階段状のものの体積を出して それを変形(階段の一部を切って別の場所に埋めて…)を繰り返せば 等積のまま四角錐にすることができるとか 長方形をうまく分割すると、3つの体積の等しい四角錐に分割できるとか とかとか… 証明とまではいかないが、角錐や円錐のコップを使って 角柱や円柱のコップに水をくむと、ちょうど3杯でいっぱいになる なんて経験的説明もできないわけではない。
- 685 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:17:57 ]
- >長方形をうまく分割すると
直方体を… の間違い
- 686 名前:132人目の素数さん [2009/08/03(月) 17:18:34 ]
- 683それってできないと思う ちなみにこのスレ見てる人って大学生とか?僕は高校生です
- 687 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:18:49 ]
- >>681
日本語が不自由な方ですか? 小中学校の範囲では証明ができないので、事実だけ天下り式に与えて、 成立することを認めてもいいです、覚えなさいとやるだけです。 かなり特殊な形の斜三角錐なら合同なものをみっつ併せて〜〜 なんて話をやることもできるが、殆どの場合にはそれは無理。
- 688 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:19:58 ]
- >>682
そんなことをしたら数学が成り立たないでしょ。
- 689 名前:132人目の素数さん [2009/08/03(月) 17:21:08 ]
- 684 コップに3杯ってのは小学校の時に教えてもらったけど証明しないと落ち着かない
- 690 名前:132人目の素数さん [2009/08/03(月) 17:22:34 ]
- 証明できないことを教えるカリキュラムが悪い
- 691 名前:132人目の素数さん [2009/08/03(月) 17:24:03 ]
- 687お前バカか?だったら小学校中学校で教えないだろ お前みたいに一つの視点からしか見れないやつが数学語るな
- 692 名前:132人目の素数さん [2009/08/03(月) 17:25:22 ]
- サンカクスイの先にシカクスイの方証明しないと
- 693 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:25:40 ]
- www3.synapse.ne.jp/~kintaro/kakusui1.htm
- 694 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:27:10 ]
- >>691
それが残念なことに教えるのだよ。
- 695 名前:687 mailto:sage [2009/08/03(月) 17:28:29 ]
- あれ、三つに合同分割できるのは四角錐だったかな……
- 696 名前:132人目の素数さん [2009/08/03(月) 17:28:30 ]
- 694お前もういいから
- 697 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:30:20 ]
- >>696
(習う範囲では証明できないので)証明無しに事実だけ教えてさあ覚えろってのは、 高校以下の数学じゃかなりたくさんあるぞ。
- 698 名前:132人目の素数さん [2009/08/03(月) 17:30:34 ]
- 実際やってみるってのはわかるけど鉛筆と紙だけで証明できないかな
- 699 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:31:48 ]
- >>676の思い込みは、ちゃんと数学を勉強したら解消するよ。
- 700 名前:132人目の素数さん [2009/08/03(月) 17:31:50 ]
- 697例えば・・・・?
- 701 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:32:49 ]
- >>698
できるよ。
- 702 名前:132人目の素数さん [2009/08/03(月) 17:33:15 ]
- 699だったらオレがいまから証明してやるから否定してみろ
- 703 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:34:00 ]
- 高校生スレでやってくれないかな
- 704 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:34:15 ]
- >>700
すぐにおもいつくところでは 実数同士の掛け算で分配法則が成立することとか はさみうちの原理とか
- 705 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:35:12 ]
- アンカーもまともに打てない小学生が偉そうにww
- 706 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:36:49 ]
- >>691
残念ながら、数学を語る資格の無いバカは君のほうだ。
- 707 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:39:54 ]
- 数学を語る資格があるのは
・東大生 ・ハーバード大生 ・ケンブリッジ大生 ・モスクワ大生 ・エール大生 ・ソウル大生 ・オックスフォード大生 ・ロンドン大生 ・カリフォルニア工科大生 ・シカゴ大生 ・エコール・ポリテクニーク生 ・マサチューセッツ工科大生 ・コロンビア大生 ・VIPPER だけ ソースは数学板のスレ一覧
- 708 名前:132人目の素数さん [2009/08/03(月) 17:45:50 ]
- 実際に合ってもないやつの事をバカ呼ばわりするのはどうかと思うが・・・・
それにバカ呼ばわりするなら実際に691が言ってることが無理なことを証明してやれよ まあオレにはどっちも証明できないが
- 709 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:50:36 ]
- 証明が無いことを証明しろってのだといわゆる悪魔の証明じゃないかな。
証明があることを主張するほうにまず証明責任があるような気がするけど。
- 710 名前:132人目の素数さん [2009/08/03(月) 17:51:54 ]
- ある公理系で証明できないことの証明なんていくらでもあるよ
- 711 名前:132人目の素数さん [2009/08/03(月) 17:58:38 ]
- 直方体の縦横高さが全部同じのバージョンって何って言うんだっけ? しょうもなくて悪い
- 712 名前:132人目の素数さん mailto:sage [2009/08/03(月) 17:59:54 ]
- りっぽうたい
- 713 名前:132人目の素数さん mailto:sage [2009/08/03(月) 18:01:19 ]
- 糞暑い毎日が続く中、ここ一見当たり前のように思うが証明が難しい定理スレでは
勘違い房によるスレ違いの話題が続いております
- 714 名前:132人目の素数さん [2009/08/03(月) 18:05:11 ]
- どんな直方体も小さな立方体の集まりからできている
よって立方体によって証明する これっておkだよね?
- 715 名前:132人目の素数さん [2009/08/03(月) 18:11:32 ]
- ちょっと不安だけど小学生中学生でも分かる証明できた 見るやついるなら書くけどどう?
- 716 名前:132人目の素数さん mailto:sage [2009/08/03(月) 18:13:08 ]
- >>714
だめだね。
- 717 名前:132人目の素数さん [2009/08/03(月) 18:14:17 ]
- 716なんで?
- 718 名前:132人目の素数さん mailto:sage [2009/08/03(月) 18:14:19 ]
- >>714
任意の三角錐を与えるところから立方体にもっていけるのならおkじゃないかな。
- 719 名前:132人目の素数さん mailto:sage [2009/08/03(月) 18:15:06 ]
- >>717
どんな三角錐でも直方体にできるというわけじゃないから。
- 720 名前:132人目の素数さん mailto:sage [2009/08/03(月) 18:16:35 ]
- >>714
何の証明かは知らないけど、立方体の場合に証明できることであれば 直方体に関する定理を立方体の場合に帰着して証明するというのは やってかまわないよ。
- 721 名前:132人目の素数さん [2009/08/03(月) 18:31:27 ]
- 720ありがとう
じゃ証明します 縦1横2高さ3の直方体があるとすればそれは辺が1の立方体が6個集まったもの同様にある直方体があるとしても立方体によって証明できるのでここでは全ての辺が1の立方体を使って証明する
- 722 名前:132人目の素数さん mailto:sage [2009/08/03(月) 18:40:56 ]
- >>721
辺が√2,√5,√7の直方体だったら立方体によって証明できるの?
- 723 名前:132人目の素数さん [2009/08/03(月) 18:41:50 ]
- 立方体の上の面のど真ん中をPとすると立方体の底面とPによってシカクスイSができる
その立方体の上に同様の立方体を逆さまにしてのせる そうすると側面に4つのシカクスイと上下に2つのシカクスイができる
- 724 名前:132人目の素数さん mailto:sage [2009/08/03(月) 18:43:48 ]
- >>686
院生もアカポス持ちも崩れもたくさんいる
- 725 名前:132人目の素数さん [2009/08/03(月) 18:47:16 ]
- 722√2とかは確か無理数だっけ、どちみちどんな数だとしても0に限りなく近い値0、0・・・・・・・・1を辺とする立方体なら表せる
じゃダメか?
- 726 名前:132人目の素数さん [2009/08/03(月) 18:48:19 ]
- スレ違い死ね
- 727 名前:132人目の素数さん mailto:sage [2009/08/03(月) 18:51:40 ]
- >>725
一般の直方体の場合から立方体の場合に帰着させることができるという ちゃんとした論拠が無ければそりゃだめだろ。 それ以前に、もし>>674の証明をやろうとしているつもりだったら、 そもそもどんな錐体を始めに与えても、(適当な場合に帰着することが可能で) 直方体を使った話に最終的に持っていける、ということをまず言わないと 証明にならないよ?
- 728 名前:132人目の素数さん [2009/08/03(月) 18:54:50 ]
- 証明の続き
側面のシカクスイの底面積,高さは上下の底面積と高さの2倍と2分の1倍従って側面をSとおける ↑ 少し曖昧だけど実際書いてみてほしい それになぜSとおける ていうやつにも別の証明があるけどケータイでしんどいから需要があったらのせる
- 729 名前:132人目の素数さん [2009/08/03(月) 18:59:17 ]
- 726は嫉妬おつかれ
証明の続きだけどもうたいがい分かっていると思うので雑にする 全部の体積は6Sもとの立方体は3S、Sは確かに3分の1になっている
- 730 名前:132人目の素数さん [2009/08/03(月) 19:05:59 ]
- 何か不備があったら書いといてくれ
ちなみに√を含む場合も725にかいているように限りなく小さい値をつかえば表せる
- 731 名前:132人目の素数さん mailto:sage [2009/08/03(月) 19:07:05 ]
- >>729
おつかれさま、これで立方体に内接する四角錐のなかでも直錐と呼ばれる 特殊な場合のみについては証明ができたね。 よしよし、その調子で三角錐について証明してくれ
- 732 名前:132人目の素数さん mailto:sage [2009/08/03(月) 19:12:00 ]
- >>730
> 限りなく小さい値をつかえば表せる こういうことを言っていると、1=2が証明できてしまうね。 長さ1の線分_と端点を共有する長さ2の線分を真ん中で/\のように折り曲げたものを考える 長さ2の線分をそれぞれの線分の真ん中で折って/\/\のようにする。 山を潰すようにこの操作を無限に繰り返すと最初の線分_と重なる。
- 733 名前:132人目の素数さん mailto:sage [2009/08/03(月) 19:12:54 ]
- もういいから
やめるか他所でやるか死ぬかを選べ
- 734 名前:132人目の素数さん mailto:sage [2009/08/03(月) 19:13:07 ]
- > 長さ2の線分をそれぞれの線分の真ん中で折って/\/\のようにする。
この操作で線分の長さは2のまま変わっていないことに注意。
- 735 名前:132人目の素数さん [2009/08/03(月) 19:14:42 ]
- 底面積と高さが一定だからチョクスイも他のシカクスイも体積はおなじだろ?
サンカクスイも証明して<立方体を三角柱にしろ
- 736 名前:132人目の素数さん mailto:sage [2009/08/03(月) 19:16:25 ]
- >>735
同じだと証明してください。
- 737 名前:132人目の素数さん mailto:sage [2009/08/03(月) 19:17:08 ]
- >>735
立方体を三角柱にして証明をしてください。
- 738 名前:132人目の素数さん [2009/08/03(月) 19:19:19 ]
- 1+1=2 1≠2 σ(^_^;)?
- 739 名前:132人目の素数さん mailto:sage [2009/08/03(月) 19:22:59 ]
- >>732
円の面積の公式の“証明”がそんな感じだよね。 極限について論証する道具が無いから、無限に切って貼り合わせたら 大体長方形だから長方形の面積に収束することを「直感(≠直観)」的に 正しいと認めてしまって話を先に進めてしまう。
- 740 名前:132人目の素数さん mailto:sage [2009/08/03(月) 19:25:07 ]
- >>735
>底面積と高さが一定だからチョクスイも他のシカクスイも体積はおなじだろ? これは、小学生にも理解可能な初等的な証明は絶望的でしょう。 体積が等しく、分解合同でも補充合同でもない例があるはず。
- 741 名前:132人目の素数さん mailto:sage [2009/08/03(月) 21:20:16 ]
- >>687
そもそも小中学校の算数では厳密な証明とそうでない直感的な証明との間に 区別をあまり付けないだろう >小中学校の範囲では証明ができないので、事実だけ天下り式に与えて、 >成立することを認めてもいいです、覚えなさいとやるだけです。 という言い方も不正確だと思う 小中学校の範囲で証明を厳密に出来たとしてもそれが長い物なら教科書に載せないし 直感的な証明(というか説明)があればそれを証明として載せるのも 小中学校の教科書でなら許されるだろう
- 742 名前:132人目の素数さん [2009/08/03(月) 21:29:23 ]
- 平方剰余の相互法則
一見当たり前そうだが証明は難しい!
- 743 名前:132人目の素数さん mailto:sage [2009/08/03(月) 21:45:01 ]
- >>742
>平方剰余の相互法則 >一見当たり前そうだが証明は難しい! 「一見当たり前そう」には見えんのだが?
- 744 名前:132人目の素数さん mailto:sage [2009/08/03(月) 22:05:50 ]
- >>741
小中学校で証明をやるのは初等幾何のところだけですよ。
- 745 名前:742 mailto:sage [2009/08/03(月) 22:15:20 ]
- 一見簡単そう...
に訂正しまつ
- 746 名前:132人目の素数さん mailto:sage [2009/08/03(月) 22:48:37 ]
- んなことあるか。
算数では証明よりも実用が先だ。
- 747 名前:132人目の素数さん mailto:sage [2009/08/04(火) 02:10:27 ]
- 体積・高さが等しいけど分解合同でない角錐二つがあることを
デーン不変量を使って中学生にも分かるように説明することは 不可能ではないかもしれない
- 748 名前:132人目の素数さん mailto:sage [2009/08/04(火) 04:30:02 ]
- ちなみに
円錐の3倍が円柱だとかの「体積の関係」の"知識"を問う問題が 平成19〜20年度の全国学力テストの中学校数学に出題されている 19年度は 円柱→円錐 20年度は 円錐→円柱 出題者(=文部科学省)は、きちんと理解しているかどうかをみたいため 同じ趣旨の問題を逆にして出題した という
- 749 名前:132人目の素数さん mailto:sage [2009/08/04(火) 06:01:23 ]
- 実にどんぶり勘定な統計ではあるが
この分野(数量関係)での全国平均正答率は 58.6%
- 750 名前: ◆27Tn7FHaVY mailto:sage [2009/08/05(水) 17:25:55 ]
- >>686
教育の大部分は、知識の伝授ではない。
- 751 名前:132人目の素数さん mailto:sage [2009/08/05(水) 17:31:58 ]
- 教育の大部分は権力者にとって都合のよい市民を育てるために費やされる。
- 752 名前: ◆27Tn7FHaVY mailto:sage [2009/08/05(水) 17:34:46 ]
- そういうこと言う人も結構いるね
教科書なんかそんな信じてたん、って感じだが。
- 753 名前:132人目の素数さん mailto:sage [2009/08/05(水) 19:00:51 ]
- 教科書に書いてあるようなことではないよ。
- 754 名前:KingGold ◆3waIkAJWrg [2009/08/05(水) 21:01:16 ]
- それでは私が権力者となろう。
- 755 名前:「猫」∈社会の屑 ◆ghclfYsc82 mailto:sage [2009/08/05(水) 21:08:22 ]
- どうかソレだけはやめといて下さい
- 756 名前:132人目の素数さん mailto:sage [2009/08/05(水) 22:24:51 ]
- >>755
彼の言うことはいつも口だけなので権力には永遠になれないよ。
- 757 名前:132人目の素数さん mailto:sage [2009/08/06(木) 07:34:10 ]
- >>754-755
荒らすなゴミども
- 758 名前:132人目の素数さん mailto:sage [2009/08/06(木) 10:50:49 ]
- >>676
駿台(笑)の参考書などには、名前を忘れちゃった(要するに重要じゃない)ナンタラの原理、を引用してきて それに基づいた「証明」を与えているものがあった. しかしながら、その参考書でもその原理の証明自体は与えられていなかった. ちなみに、その原理の内容ってのは、 『立体Vを、ある直線に垂直な平面束に分解し、その平面束における面積が S(t) (-∞ < t < ∞) だったとする.また別の立体 V'に対して同様の操作を行って 得た面積たちが T(t) (-∞ < t < ∞)で表されたとする.このとき、 ∀t S(t) = T(t) ⇒ V と V' の体積は同じ』 というものだったと記憶してる.まあこれを証明しようと思ったら、現在では普通は積分を使いますね. アルキメデスの搾り出し法でもいいけどさ.
- 759 名前:132人目の素数さん mailto:sage [2009/08/06(木) 11:20:55 ]
- 等積変形の1
- 760 名前:132人目の素数さん [2009/08/06(木) 17:34:06 ]
- 逆の例はあるのかな?
「証明は簡単だが一見当たり前のように見えない定理」
- 761 名前:132人目の素数さん [2009/08/06(木) 20:31:54 ]
- >>760
自然数から実数への全単射は存在しない → 対角線論法
- 762 名前:132人目の素数さん [2009/08/06(木) 22:02:22 ]
- 立方体の体心から各頂点に直線引いたら6等分されるからその体積は立方体の1/6であることを使って等積変形すればいんじゃね?
って中学の頃はそう解釈してたけど
- 763 名前:KingGold ◆3waIkAJWrg [2009/08/06(木) 22:57:20 ]
- 私こそ世の中枢となろう。
Reply:>>762 直線では分けられない。
- 764 名前:KingGold ◆3waIkAJWrg [2009/08/06(木) 23:00:20 ]
- 私が権力者となりどうするかは説明しなくてはならないだろう。
人付き合いにおける作法についてはまた別の話としよう。 現代社会には科学は不可欠。ゆえに科学を教育する。 それだけではない、ものづくりの実践における品質管理を徹底する。
- 765 名前:132人目の素数さん mailto:sage [2009/08/06(木) 23:02:40 ]
- >>764
というからには衆議院選挙に立候補するんだろうな
- 766 名前:132人目の素数さん mailto:sage [2009/08/06(木) 23:09:00 ]
- >>763-764
荒らすな
- 767 名前:132人目の素数さん mailto:sage [2009/08/06(木) 23:28:21 ]
- 挨拶が出来ないkingが人付き合いにおける作法の話をする資格はない。
- 768 名前:132人目の素数さん mailto:sage [2009/08/06(木) 23:30:24 ]
- というかkingは社会経験がないんだろ
権力者になったってまともに人を使いこなせる訳がない
- 769 名前:KingGold ◆3waIkAJWrg [2009/08/07(金) 04:08:41 ]
- Reply:>>765,>>768 お前は権力者に何を求めている。
Reply:>>766-767 お前に何がわかるというか。
- 770 名前:758 mailto:sage [2009/08/07(金) 06:47:09 ]
- 名前思い出した。「カヴァリエリの原理」だ。
>>762 頭いいなお前 >>763 頭悪いなお前
- 771 名前:132人目の素数さん [2009/08/07(金) 11:38:39 ]
- うろ覚えだが、中間値の定理の証明が
案外難しかった記憶がある。
- 772 名前:132人目の素数さん mailto:sage [2009/08/07(金) 12:08:50 ]
- >>771 区間が連結であることを示せばほぼ自明。
実数の公理を理解してれば別に。
- 773 名前:132人目の素数さん mailto:sage [2009/08/07(金) 12:19:50 ]
- うろ覚えをそのままにせず検証してから書きなよ
- 774 名前:KingGold ◆3waIkAJWrg [2009/08/07(金) 22:44:40 ]
- Reply:>>770 お前は何か。
- 775 名前:132人目の素数さん [2009/08/07(金) 23:39:06 ]
- xyz座標空間において
円または楕円を正射影した時、それらは任意の平面において円または楕円になる。 これが示されると円や球の正射影の問題が圧倒的に早く解けると思うのですが…
- 776 名前:132人目の素数さん [2009/08/07(金) 23:45:40 ]
- >>775だけど
×任意の平面 ○その円や楕円に平行でない任意の平面
- 777 名前:132人目の素数さん mailto:sage [2009/08/07(金) 23:59:44 ]
- >>772
> 区間が連結であることを示せばほぼ自明。 そこから先が難しいんだよ。
- 778 名前:132人目の素数さん mailto:sage [2009/08/08(土) 00:01:16 ]
- 連続写像は連結な集合を連結な集合に移す。
(背理法使えば一行) これいってもわからなかったらお前の勉強不足
- 779 名前:132人目の素数さん mailto:sage [2009/08/08(土) 01:28:36 ]
- f(x)が連続でa<b f(a)<c<f(b)のとき a<d<b,f(d)=c となるdを求める方法は
2分法を使ったアルゴリズム的にやる証明でもそんなに長くかからないな
- 780 名前:132人目の素数さん mailto:sage [2009/08/08(土) 12:59:18 ]
- >>774
お前は頭が悪いな
- 781 名前:132人目の素数さん mailto:sage [2009/08/08(土) 20:11:31 ]
- それはなにか新しい情報なのか?
- 782 名前:132人目の素数さん mailto:sage [2009/08/09(日) 11:48:45 ]
- Noether normallisation lemma
結論は「直感的には」自明のようにも思える。
- 783 名前:KingGold ◆3waIkAJWrg [2009/08/09(日) 17:05:29 ]
- Reply:>>780 そう思うなら、お前は何をしに来た。
- 784 名前:132人目の素数さん mailto:sage [2009/08/09(日) 18:50:47 ]
- >>783
kingの頭は悪いという命題が真であることの証明は難しいか。
- 785 名前:132人目の素数さん mailto:sage [2009/08/09(日) 18:57:02 ]
- kingは学部卒くらいの数学力はある
それ以上では全くないけど
- 786 名前:132人目の素数さん mailto:sage [2009/08/09(日) 19:50:42 ]
- なんだkingはその程度だから講師を首になったのか。
- 787 名前:「猫」∈社会の屑 ◆ghclfYsc82 mailto:sage [2009/08/09(日) 19:53:35 ]
- 今の数学科学部卒ってえのは其処まで基礎体力が無い
っちゅう事かいな、ソレは困ったモンじゃなぁ そりゃ2ちゃんで遊ぶしかないっちゅう事やねぇ まあ数学っちゅうんは一般社会では使い道が無いからねぇ しゃーないわなぁ
- 788 名前:132人目の素数さん mailto:sage [2009/08/09(日) 23:21:06 ]
- >>787
>まあ数学っちゅうんは一般社会では使い道が無いからねぇ それは猫さんがやってた分野の話であってですね、偏微分方程式 なんかは工学の基礎ですよ。
- 789 名前:132人目の素数さん mailto:sage [2009/08/09(日) 23:29:46 ]
- 工学が一般のつもりでいやがるとはな
- 790 名前:KingGold ◆3waIkAJWrg [2009/08/10(月) 08:56:46 ]
- 工学が一般に広まるはずだが、何が起こっているのか。
- 791 名前:「猫」∈社会の屑 ◆ghclfYsc82 mailto:sage [2009/08/10(月) 09:16:30 ]
- なるほど、ソレはそうですな。
不見識でどうもスンマヘンなァ
- 792 名前:132人目の素数さん mailto:sage [2009/08/10(月) 09:32:47 ]
- 広がるのは工学の結果であって過程ではない
結果には数学は必要ない。
- 793 名前:132人目の素数さん mailto:sage [2009/08/10(月) 09:33:59 ]
- 微分方程式が解けないと見られないテレビ。
数理統計がわからないと加入できない保険。
- 794 名前:「猫」∈社会の屑 ◆ghclfYsc82 mailto:sage [2009/08/10(月) 11:33:40 ]
- ああ、そうでっか。
そんでその: 「微分方程式とテレビの関係」 は是非ともちゃんと知りたいでんなァ 誰か教えてくれへんかなァ
- 795 名前:「猫」∈社会の屑 ◆ghclfYsc82 mailto:sage [2009/08/10(月) 11:38:55 ]
- ああ、そんでねェ
ワシは微分方程式が判らへんさかいテレビは見いひんのやしナ、 数理統計も判らへんさかい保険は入ってないんやけどサ、 (実は金が全然あらへんさかいやけどな) 普通の人はエライこっちゃ! テレビも保険もアカンのやからなァ こりゃ凄い世の中やで!!
- 796 名前:KingGold ◆3waIkAJWrg [2009/08/10(月) 20:21:36 ]
- Reply:>>792 それだけではない、過程も人為的になされることゆえに、過程も伝達されるはずだ。
- 797 名前:132人目の素数さん [2009/08/10(月) 21:13:58 ]
- 1+1
- 798 名前:132人目の素数さん mailto:sage [2009/08/11(火) 01:57:58 ]
- たとえ伝達されても、聞いちゃいませんな。
デジタル波とアナログ波の違いが全くわからなくても 地デジは見られるからね。
- 799 名前:132人目の素数さん mailto:sage [2009/08/11(火) 18:41:59 ]
- >>789
数学が一般のつもりでいやがるとはな
- 800 名前:132人目の素数さん mailto:sage [2009/08/12(水) 03:32:14 ]
- >>799
そんなつもりなど毛頭ないが? もっとも、中学高校で数学は必修なので 日本人の90%以上は数学を学んだ、学んでいる、学ぶ予定 ということにはなる。 つまり、一般人は数学を学ぶということだな。
- 801 名前:KingGold ◆3waIkAJWrg [2009/08/12(水) 12:07:38 ]
- Reply:>>798 それなら全てにおいて慎むがよい。
- 802 名前:132人目の素数さん mailto:sage [2009/08/12(水) 18:19:53 ]
- 通常は道理を知る人間のほうが慎み深いものだよ
知らないということは、敬う心も畏れる心もないということだ。
- 803 名前:132人目の素数さん mailto:sage [2009/08/12(水) 18:59:02 ]
- kingは慎むことができないからな
- 804 名前:KingGold ◆3waIkAJWrg [2009/08/13(木) 11:39:59 ]
- Reply:>>803 お前に何がわかるというか。
- 805 名前:132人目の素数さん mailto:sage [2009/08/14(金) 01:43:53 ]
- >>804
お前にわかる事は一つでもあるのか? 何年経っても思考盗聴の犯人を特定できていないじゃないか。
- 806 名前:132人目の素数さん [2009/08/20(木) 17:55:56 ]
- いやああん
kingいやあん
- 807 名前:132人目の素数さん [2009/08/21(金) 15:08:00 ]
- C上の単連結な開集合X上で正則な関数fとX上の任意の閉曲線γに対し ∫_γ fdz = 0 となる
って定理はジョルダンの閉曲線定理に比べて証明簡単?
- 808 名前:132人目の素数さん mailto:sage [2009/08/21(金) 15:59:32 ]
- それを証明するのにジョルダンの閉曲線定理つかうんじゃなかったっけか?
- 809 名前:132人目の素数さん mailto:sage [2009/08/21(金) 19:00:18 ]
- 実数の集合A、Bがあり、A⊂Bとする。
この時、AとBそれぞれの最小値infA、Bと最大値supA、Bの関係が infB≦infA≦supA≦supB となることを証明せよ。 当たり前すぎてどう証明していいか全く手をつけられませんでした。 どなたか手ほどきをよろしくお願いします
- 810 名前:132人目の素数さん mailto:sage [2009/08/21(金) 19:24:27 ]
- >>809
上界と最大値の区別すらつかないってのは それ以前の問題だろ
- 811 名前:132人目の素数さん mailto:sage [2009/08/21(金) 20:38:04 ]
- >>809 infやsupの定義がわかってないんだろ。
てかここわからない問題を聞くスレじゃないんだけど。
- 812 名前:132人目の素数さん [2009/08/22(土) 12:10:41 ]
- ミルナーはエキゾチック球面を発見したとき、間違えたと思って数ヶ月間違い探しをしたそうな
微分同相とただの同相が別だとは思いもよらなかったらしい
- 813 名前:132人目の素数さん [2009/08/22(土) 15:24:39 ]
-
πが無理数
- 814 名前:132人目の素数さん mailto:sage [2009/08/22(土) 16:15:35 ]
- >>810 上界ではなく上限だろ
- 815 名前:132人目の素数さん [2009/08/22(土) 16:17:11 ]
- nCmは整数
これはそうでもないか
- 816 名前:132人目の素数さん mailto:sage [2009/08/22(土) 16:37:10 ]
- >>809
もしinf(A)<inf(B) またはsup(B)<sup(A)ならばA⊂Bに矛盾
- 817 名前:132人目の素数さん mailto:sage [2009/08/22(土) 17:24:42 ]
- >>816 それって問題言い換えただけだろ。
- 818 名前:132人目の素数さん mailto:sage [2009/08/24(月) 15:41:52 ]
- Bernoulli数が有理数
- 819 名前:132人目の素数さん mailto:sage [2009/08/24(月) 16:21:28 ]
- 漸化式考えれば帰納法から明らかでしょう。
- 820 名前:132人目の素数さん mailto:sage [2009/08/24(月) 16:46:00 ]
- nが(0を含まない)自然数ならばΓ(n)は自然数
- 821 名前:132人目の素数さん mailto:sage [2009/08/24(月) 21:16:36 ]
- 漸化式考えれば帰納法から明らかでしょう。
- 822 名前:KingGold ◆3waIkAJWrg [2009/08/26(水) 16:57:19 ]
- Reply:>>805 そろそろこの世界の正体を教えてくれないか。
Reply:>>806 イアンパーセバル。
- 823 名前:132人目の素数さん mailto:sage [2009/08/26(水) 17:03:52 ]
- >>822
正体を知るにはもっと勉強する必要がある kingにはまだ早い
- 824 名前:132人目の素数さん mailto:sage [2009/08/26(水) 22:12:07 ]
- >>823
おい変なほのめかしはやめろ。「計画」の推進に欠かせない大事な被験者なんだぞ。 kingの「覚醒」は「計画」で定められたとおりのタイミングで起こさなければ我々が 五万年にわたって用意してきた「計画」が水泡に帰することになる。なんとしても「調停者」が 介入する口実を与えないようにしなければならない。
- 825 名前:KingGold ◆3waIkAJWrg [2009/08/28(金) 00:10:47 ]
- Reply:>>823 知るべきときのはずだ。
Reply:>>824 思考の無許可見による介入がなくなれば、よりよく理のためになろう。
- 826 名前:132人目の素数さん mailto:sage [2009/08/28(金) 00:17:32 ]
- 荒らすな
- 827 名前:132人目の素数さん mailto:sage [2009/08/28(金) 01:36:22 ]
- >>825
だからkingは思考の無許可見による介入がされないように対策しろよ。
- 828 名前:132人目の素数さん mailto:sage [2009/08/28(金) 11:04:05 ]
- 男は黙ってNG登録。
女も黙ってNG登録。
- 829 名前:132人目の素数さん mailto:sage [2009/09/15(火) 19:38:16 ]
- 七年一時間。
- 830 名前:132人目の素数さん mailto:sage [2009/09/25(金) 14:11:47 ]
- >>822
世界の正体について教えてもいいが、しかし それを書くにはこのスレは狭すぎる
- 831 名前:132人目の素数さん mailto:sage [2009/12/05(土) 00:47:57 ]
- 337
- 832 名前:132人目の素数さん [2010/01/24(日) 16:42:50 ]
- ageage
- 833 名前:きよし [2010/01/30(土) 20:17:04 ]
- サードの定理かな。
- 834 名前:132人目の素数さん mailto:sage [2010/01/30(土) 20:45:30 ]
- 当たり前にみえるか?
- 835 名前:やすし [2010/02/01(月) 00:24:04 ]
- 具体例を考えて絵を描けば当たり前だ。
- 836 名前:132人目の素数さん [2010/02/10(水) 01:41:48 ]
- バナッハ・タルスキーの定理
- 837 名前:132人目の素数さん mailto:sage [2010/02/10(水) 01:57:16 ]
- むしろ直感的にはおかしいけど
証明は学部レベルの知識で足りる定理でしょう。
- 838 名前:132人目の素数さん [2010/03/07(日) 01:11:45 ]
- age
- 839 名前:132人目の素数さん mailto:sage [2010/05/07(金) 17:07:00 ]
- 647
- 840 名前:132人目の素数さん mailto:sage [2010/05/20(木) 00:20:49 ]
- 〔出題〕
n個の自然数 a[1],a[2],…,a[n] が a[1] + a[2] + …… + a[n] = 1+2+…+n = n(n+1)/2, a[1] * a[2] * …… * a[n] = n!, をみたしている。 {a[1],a[2],…,a[n]} = {1,2,…,n} か? www.casphy.com/bbs/test/read.cgi/highmath/1089455158/598-603 casphy - 高校数学 −修羅の刻−【難問】
- 841 名前:132人目の素数さん [2010/05/24(月) 21:58:21 ]
- age
- 842 名前:132人目の素数さん [2010/05/24(月) 23:12:31 ]
- クレタ人のパラドクスとかラッセルのパラドクスに対して
「肯定も否定もできない」「問いの立て方がそもそも間違っている」 以外に言い方はないの?
- 843 名前:132人目の素数さん mailto:sage [2010/05/25(火) 02:33:55 ]
- いくらでもあるが
- 844 名前:132人目の素数さん [2010/05/25(火) 15:23:26 ]
- アイソシュタイン
= いそ いし
- 845 名前:132人目の素数さん mailto:sage [2010/05/25(火) 21:21:46 ]
- >>842
この本にこれまでに出てきた色んな案が載ってる。 www.amazon.co.jp/dp/4875252056
- 846 名前:132人目の素数さん [2010/05/26(水) 21:53:07 ]
- おおサンクス!面白そうな本ですね
ただ私が思ったのはさ、「問いの立て方がそもそも間違っている」というのは前提が誤っているという事を言う。 解決するやりかたとして「その前提をこういう前提として好意的に?解釈するならば〜」というやり方 「肯定も否定もできない」というのはこちらの論理の前提とそちらの前提がかすってもいないので どうしようもないと言う。そして背理的に真偽以外でとりあえず存在する事は認める というやり方があるなと。ちょっとややこしい言い方をして申し訳ない
- 847 名前:132人目の素数さん [2010/05/27(木) 01:38:39 ]
- 円の面積と同じ面積の正方形を三角定規とコンパスで書けないこと。
- 848 名前:132人目の素数さん [2010/05/27(木) 01:48:10 ]
- 円を正方形に写すコンフォーマルマッピングは?
- 849 名前:132人目の素数さん mailto:sage [2010/05/27(木) 08:13:52 ]
- >>846
前提 = 公理 間違っている = 矛盾 非理的に真偽以外でとりあえず存在することは認める = 排中律の否定 と読み変えていいのか?
- 850 名前:132人目の素数さん mailto:sage [2010/06/06(日) 01:13:03 ]
- フビニの定理
重積分の積分順序が変えられるのって自明じゃないのよね・・・ ルベーグ積分を使うとエレガントに証明できるってハードル高いなあ
- 851 名前:132人目の素数さん [2010/06/07(月) 18:46:47 ]
- >>849
ほぼそのとおり。ただ排中律の否定と言うより中間肯定律というか しばらく考えたんだけど自分は対偶と背理法の関係で悩んでるんだ とわかった。で背理法のようなもの=対偶と中間肯定律=背理法が を混同しているんだ、と思ったけどどうもこれも違うらしい。 事の起こりと言うか始めは対角線論法について考えて悶々としてたんだ。 だんだん方向が変わったんだけど。 で対角線論法は背理法だけど、自然数は加算と言う論理を持っている人が対偶として、 つまり加算でないものとして非加算を証明してるわけではない。また自然数でも実数でも ない濃度(加算/非加算)を、中間を肯定することで証明してるわけではない。というのは 自然数が加算、って論理を持ってる人が実数を見て「加算でないから自然数ではない何者か」 として折衷案として濃度を言ったわけではない。前の文で言えば真偽以外でとりあえず存在す ることは認めるというやつ、が背理法ではない。
- 852 名前:続き [2010/06/07(月) 18:49:05 ]
- この二つは結局一枚のベン図の上で、線の中はあるかどうかと考えてるだけの証明のやり方の
対立のようなもんなんだ。一枚目は実数の紙に、自然数の円が書いてある。しかし対角線論法 のようなものをここに関係させると、二枚目の紙が必要になってくる。 一枚だけで考えてる人たちは実数の方がどう見たって広いからより無限だろう、とか、 いやどちらも同じようにどこまでも数え上げていけるんだから無限なんだろう、と考えている。 ここに実数と自然数を対応させた紙、というのをこっそり滑り込ませる。上記の人たちは 「より大きい」とか「同じように数えられる」というように暗黙のうちに自然数と実数の 対応付けを認めてしまっているから、その二つはそもそも比較できるのか?とは思えない。 というか言えない。仮定なのだけど、仮定なのに否定できない。 だからこの二枚目の紙と一枚目の紙を混同する。その上で円の内と外の異なることを言うと、 その二つの関係は対偶でも中間でもないものになる。ここがまさに素晴らしいというか美しい ところ。それまでの一枚の「実数、自然数、そのどちらかかどちらもの無限」という段階から レベルが繰り上がって「非加算、加算、濃度、」無限」になる。 、、そんな感じに背理法は素晴らしく出来ている。えーとだからなんだっけ、、w そう「肯定も否定もできない」「問いの立て方がそもそも間違っている」 ではないちゃんとした背理法をクレタ人のパラドクスに上手く滑り込ませなければ いけない。
- 853 名前:132人目の素数さん mailto:sage [2010/06/07(月) 19:13:37 ]
- 長い上に中身のない
まさに駄文の例
- 854 名前:132人目の素数さん [2010/06/07(月) 19:43:49 ]
- 絶対ちゃんと読んでくれてないでしょw
そんなにややこしかったり飛躍したりしてるかなあ。 ああただクレタ人のパラドクスに滑り込ませる、というのは明らかに おかしかった。
- 855 名前:132人目の素数さん mailto:sage [2010/06/07(月) 21:12:57 ]
- >>851
× 加算 ○ 可算 いわゆる 可算無限・自然数の濃度 の誤字だと考えていいのか? それとも加算(足し算?)というなにかまた別のものなのか?
- 856 名前:132人目の素数さん mailto:sage [2010/06/07(月) 22:15:47 ]
- クレタ人のパラドクスがパラドクスになってないことを知らない奴がいたことに驚いた。
基礎論のスレでも言われていたが可算を加算と間違えて記述されてる文はほぼ例外なく駄文。 >>851-852はその典型的な例。
- 857 名前:132人目の素数さん mailto:sage [2010/06/07(月) 23:08:39 ]
- IMEで変換すると加算が出て来ちゃうからなあ…
それに気付けないのは、推敲してないか知らないかのどちらかだとは思うが
- 858 名前:132人目の素数さん mailto:sage [2010/06/08(火) 00:03:54 ]
- ゆとり教育の弊害って奴だな
- 859 名前:132人目の素数さん mailto:sage [2010/06/08(火) 00:11:59 ]
- 関係ないんじゃね?
ゆとり以前から中高数学には可算無限なんてのは出てこない。
- 860 名前:132人目の素数さん [2010/06/08(火) 02:13:43 ]
- 実数上の連続関数でその逆像が常に4点になるものは存在しない。
- 861 名前:132人目の素数さん [2010/06/08(火) 02:54:20 ]
- 選択公理は無矛盾
- 862 名前:132人目の素数さん mailto:sage [2010/06/08(火) 02:56:30 ]
- >>861
当たり前のように思えないからみんな証明にやっきになったんだが…。
- 863 名前:132人目の素数さん [2010/06/09(水) 07:17:46 ]
- 差が2の素数のペアが無数にある
- 864 名前:132人目の素数さん mailto:sage [2010/06/09(水) 07:50:26 ]
- 証明されてねえYO!
- 865 名前:132人目の素数さん [2010/06/09(水) 09:10:05 ]
- 674:06/08(火) 02:37 BClbH7Lp [sage]
そういえば、リーマン予想って証明されたんだっけ? MENSAメンバーの誰かなら証明できるんじゃない? 某、高知能団体(笑)のスレッドより抜粋
- 866 名前:132人目の素数さん [2010/06/09(水) 16:04:59 ]
- >>856
すまん可算だわ パラドックスになってないってやり方はもういいのよ。 安心するんだろうけどさ。それで解決したり進歩したりしてないから
- 867 名前:132人目の素数さん mailto:sage [2010/06/09(水) 16:58:14 ]
- 恥の上塗り
>それで解決したり進歩したりしてないから 自己言及型のパラドックスがパラドックスとして成立する為の条件を考察する材料になったんだぞ ラッセルのパラドックス、数学の危機を回避するアイデアもこれが基礎にある。
- 868 名前:132人目の素数さん mailto:sage [2010/06/09(水) 18:00:47 ]
- >>860
どゆこと?
- 869 名前:132人目の素数さん mailto:sage [2010/06/09(水) 18:07:34 ]
- ラッセルは結局何かを生んだわけじゃない。
それで回避されたり生まれたりするパラドクスならゼノンの時代からあるよ。 まあ、もういいか
- 870 名前:132人目の素数さん mailto:sage [2010/06/09(水) 22:13:32 ]
- ラッセルが生んだかどうかと、それがきっかけになったのでは別の話だろうに。
- 871 名前:132人目の素数さん mailto:sage [2010/06/10(木) 00:30:35 ]
- >>868
f(x)=x^2はR上の連続関数で 0の逆像は0だけだから1点 a>0ならaの逆像は-√aと√aの2点 a<0ならaの逆像は0個だけってことで ∀y∈Rに対してf(x_1)=f(x_2)=f(x_3)=f(x_4)=yとなるような x_1<x_2<x_3<x_4が存在するような連続関数fがあるか?ってことじゃね
- 872 名前:132人目の素数さん [2010/06/10(木) 22:13:06 ]
- 素数の逆数には周期性がある
- 873 名前:132人目の素数さん [2010/06/10(木) 22:17:57 ]
- 逆関数の定理。
自明に見えるが証明はかなり面倒。
- 874 名前:132人目の素数さん mailto:sage [2010/06/11(金) 04:58:00 ]
- アダマール(Hadamard)の補題
一見当たり前なんだが、ちゃんと証明つけるのはなかなか面倒。
- 875 名前:132人目の素数さん mailto:sage [2010/06/12(土) 04:27:35 ]
- en.wikipedia.org/wiki/Hadamard's_lemma
アダマールの補題ってこれのことか?
- 876 名前:132人目の素数さん mailto:sage [2010/06/13(日) 14:06:27 ]
- 「力が働く」というのは二項関係的にどうなんだろう?
- 877 名前:132人目の素数さん mailto:sage [2010/06/17(木) 03:29:29 ]
- >>875
そのページに出てくる g_i (i=1,...,n) が滑らかであることは感覚的にはすごく明らかだけど、ちゃんと言おうとすると、 有界収束定理を持ち出して云々。まあ「面倒」なだけで「難しい」ってのは言いすぎかもな。
- 878 名前:132人目の素数さん mailto:マーフィー [2010/06/20(日) 16:48:54 ]
- マーフィーの法則
- 879 名前:132人目の素数さん mailto:sage [2010/06/20(日) 17:04:29 ]
- 「最高のチャンスは最悪のタイミングでやってくる」はガチだな
- 880 名前:132人目の素数さん [2010/06/20(日) 18:32:33 ]
- >>873
1変数バージョンが、高校で「習った」逆関数の微分の公式。 自明だと錯覚してしまうのは「高校で習った」という意識があるからで、 実は高校では証明できないから認めて使っていた。 大学で勉強したあとでも、どちらが先か後かが逆になってて すんなり言えそうで言えないところがやきもきしてしまう。 「連続関数は閉区間で最大値・最小値を持つ」という定理も同様。
|

|