[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/29 15:12 / Filesize : 339 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 II



93 名前:208 [2005/11/28(月) 10:57:28 ]
K を可換体、X を K 上の n 次元のベクトル空間とする。
X の1次元の部分空間の全体は射影空間となる。
では、X の p 次元の部分空間 E の全体はどうか?
これが Grassmann または Plucker の問題意識だったのではないか。

E の基底 x_1, .., x_p に対して x_1Λ...Λx_p ∈ (Λ^p)X
を考える。E の別の基底 y_1, .., y_p に対する y_1Λ...Λy_p は、
x_1Λ...Λx_p と定数倍の違いしかない。よって、これ等は (Λ^p)X
の1次元の部分空間を定める。
よって、集合としての写像 φ: G(X, p) → G((Λ^p)X, 1) が得られる。
ここで、G(X, p) は X の p 次元の部分空間全体の集合である。
G((Λ^p)X, 1) は射影空間 P((Λ^p)X) に他ならない。
容易にわかるようにφは単射である。

では、φ(E) は、P((Λ^p)X) の元としてどのように特徴付けられる
だろうか?
この問題は、次のように言い換えられる。
x を (Λ^p)X の元としたとき、x = x_1Λ...Λx_p と書けるための
条件は何か?
ここで、x_1, ..., x_p は E の元である。

一般に、(Λ^p)X の元を p-べクトルと呼び、
x ≠ 0 で、x = x_1Λ...Λx_p と書けるとき、x を 純 p-べクトルと呼ぶ。

X の基底を e_1, ..., e_n とすれば、x = Σa_J e_J と書ける。
ここで、J は 集合 I = {1, ... , n} の濃度 p の部分集合を動く。
よって、上の問題は、x が 純 p-べクトルであるために (a_J) が満たす
条件は何か?
と言い換えてもいい。






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<339KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef