- 928 名前:9208 ◆lJJjsLsZzw mailto:sage [2006/02/03(金) 15:37:24 ]
- 命題
A を被約なネーター環とする。 p が A の素イデアルで ht(p) ≧ 1 なら pA_p は Ass(A_p) の元 ではない。 証明 A の極小素イデアル全体を p_1, ..., p_r とする。 >>926 より Ass(A) = {p_1, ..., p_r} である。 前スレの95より、Ass(A_p) = Ass(A) ∩ Spec(A_p) となる。 よって、Ass(A_p) は p に含まれる極小素イデアルの全体と 同一視される。 ht(p) ≧ 1 だから p は極小素イデアルではない。 よって、pA_p は Ass(A_p) に属さない。 証明終
|

|