命題 A をDedekind整域とし、I, J をその非零イデアルとする (I = J であってもよい)。 J と素なイデアル、つまり J + L = A となるイデアル L で IL が単項イデアルとなるものが存在する。
証明(Van der Waredenの教科書より) >>793 から I = IJ + yA となる y ≠ 0 が存在する。 yA ⊂ I だから、yA = IL となる A の非零イデアル L がある。 I = IJ + yA = IJ + IL = I(J + L) よって J + L = A である。 証明終