[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/29 15:12 / Filesize : 339 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 II



768 名前:9208 ◆lJJjsLsZzw [2006/01/19(木) 15:27:51 ]
命題
A をDedekind整域(>>601)とし、I をその非零イデアルとする。
x ≠ 0 を I の任意の元とする。
I = (x, y) となる y ≠ 0 が存在する。

証明
I = (p_1)^(n_1)...(p_r)^(n_r) を I の素イデアル分解とする。
ここで、p_1, ..., p_r は A の相異なる(非零)素イデアルである。
xA ⊂ I だから、xA = IJ となるイデアル J が存在する
(J = (xA)I^(-1) とすればよい).

J の素イデアル分解に現れる(非零)素イデアルで p_1, ..., p_r 以外
のものを q_1, ..., q_s とする。

>>742より、
各 i において ν_p_i(y) = n_i
各 j において ν_q_j(y) = 0 となるものが存在する。

yA ⊂ I だから yA = IL となるイデアル L が存在する
y の取り方から J と L は共通の素イデアル因子を持たない。
よって、J + L = A である。
よって、(x, y) = IJ + IL = I(J + L) = I である。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<339KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef