[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/29 15:12 / Filesize : 339 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 II



144 名前:208 [2005/12/01(木) 16:26:21 ]
補題
A を環、m > 0 を整数とし L を 階数 m のA-自由加群とする。
e_1, ..., e_m を L の基底とする。
M を L の部分加群とし、x_1, .., x_n をその生成元とする。
x_j = Σx_(i,j)e_i, 1 ≦ j ≦ n とする。
x_(i,j) を要素とする行列を X = (x_(i,j)) とする。

他方、f_1, ..., f_m を L の別の基底とし、
y_1, .., y_n を M の別の生成元とする。
y_j = Σy_(i,j)f_i, 1 ≦ j ≦ n とし、
Y = (y_(i,j)) とする。

p を 1 ≦ p ≦ min(m, n) である整数とする。
I ⊂ {1, ... , m}, J ⊂ {1, ... , n} で |I| = |J| = p とする。
ここで、|I|, |J| は、それぞれ I, J の濃度、即ち各集合の要素
の個数を表す。
X から I に対応する行と J に対応する列をとりだして作った
p 次の正方行列を X_(I,J) と書く。 Y_(I,J) も同様。

det(Y_(I,J)) = Σa_(K,L)det(X_(K,L)) となる。

ここで、a_(K,L) は A の元で、
和は K ⊂ {1, ... , m}, L ⊂ {1, ... , n} で
|K| = |L| = p となる K, L の組 (K, L) 全体を動く。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<339KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef