[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 10/18 11:18 / Filesize : 321 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論



95 名前:132人目の素数さん [2005/09/22(木) 18:00:01 ]
A をネーター環とし、Mを A-加群とする。
SをAの積閉集合とする。
Ass(M_S) = Ass(M) ∩ Spec(A_S) となる。
ここで、M_S は A_S-加群として考え、>>81 の同一視をしている。

証明
p ∈ Ass(M) ∩ Spec(A_S) とする。
>>93より、A-加群の単射 A/p → M がある。この像をNとする。
よって A-加群の完全列 0 → p → A → N → 0 が得られる。
>>86より、0 → p_S → A_S → N_S → 0 は完全。
よって、N_S = A_S/p(A_S) となる。
仮定より、p(A_S) ∈ Spec(A_S) である。
A-加群の完全列 0 → N → M → M/N → 0
より、A_S-加群の完全列 0 → N_S → M_S → (M/N)_S → 0
が得られる。つまり、A_S-加群の単射 A_S/p(A_S) → M_S
が存在する。よって、p(A_S) ∈ Ass(A_S) となる。

逆に、p(A_S) ∈ Ass(A_S) とする。
Ann(x/s) = p(A_S) となる、x ∈ M、s ∈ S がある。
A はネーターだから、p は有限個の生成元 a_1, ..., a_n をもつ。
(a_i/1)(x/s) = 0 だから、t(a_i)x = 0 がすべての a_i で成立つような
t ∈ S がある。よって、p = Ann(tx) となる(詳細はまかす)。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<321KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef