補題 A を単項イデアル整域、p を A の素元、M を p-加群(>>680) とする。 x を M の元でその指数 n が M の元のなかで最大のもの とする。N = Ax とおく。M/N はあきらかに p-加群である。 y を M の任意の元とする。y (mod N) の M/N における指数(>>681)を m とすると、M の元 z で、その指数が m となり、y = z (mod N) と なるものが存在する。
証明 まず、y の指数は m 以上だから m ≦ n に注意する。 (p^m)y = tx となる t ∈ A がある。 (p^n)y = (p^(n-m))tx = 0 であるから、 (p^(n-m))t = sp^n となる s ∈ A がある。 両辺を p^n で割ると、tp^(-m) = s よって、t = s(p^m) (p^m)y = tx だから、(p^m)y = s(p^m)x よって、(p^m)(y - sx) = 0 となる。 z = y - sx とおけばよい。 何故なら、z の指数が m より小さいとすると、 y (mod N) の指数も m より小さいことになって矛盾。 証明終