- 632 名前:208 [2005/11/01(火) 16:52:43 ]
- 命題
k を体、K/k を k のガロワ拡大とし、L/k をその任意の中間体とする。 G(L) すなわち Aut(K/L) で固定される体 は L である。 すなわち、K^G(L) = L である。 証明 K/L はガロワ拡大であり、特に分離拡大である。 x を K の元で L に含まれないものとする。x は L 上分離的だから x の L に関する共役元 y で x と異なるものがある。 x を y に写す Aut(K/L) の元が存在する。 これは、K^G(L) = L を意味する。 証明終
|

|