[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 10/18 11:18 / Filesize : 321 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論



341 名前:208 [2005/10/18(火) 10:50:05 ]
命題(中国式剰余定理)
A を環、I_1, I_2, ... , I_n を A の相異なるイデアルで
I_i + I_j = A が i ≠ j のとき成立つとする。
A/(I_1)(I_2)...(I_n) は (A/I_1) x (A/I_2) x ... x (A/I_n) と
標準的に同型である。

証明
環の射 f
f: A → (A/I_1) x (A/I_2) x ... x (A/I_n)
を f(x) = (x mod I_1) x ... x (x mod I_n) で定義する。
これが全射であることを示せばよい。
何故なら Ker(f) = I_1 ∩ I_2 ∩ ... ∩ I_n だが、>>339
より Ker(f) = (I_1)(I_2)...(I_n) となる。

x_1, x_2, ..., x_n を A のかってな元の列とする。
x = x_1 (mod I_1)
x = x_2 (mod I_2)
...
x = x_n (mod I_n)
となる A の元 x を求めればよい。

>>340 より、各 i に対して I_i + J_i = A
だから、z_i + e_i = 1 となる z_i ∈ I_i と e_i ∈ J_i
がある。
e_i = 1 (mod I_i)
i ≠ j のとき、e_i = 0 (mod I_j)
となる。
x = (x_1)(e_1) + (x_2)(e_2) + ... + (x_n)(e_n)
が求めるもの。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<321KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef