定理(Krull) A をネーター局所環、m をその極大イデアルとすると、 ∩m^n = 0 となる。ここで n はすべての正の整数 n > 0 を動く。
証明 I = ∩m^n とおく。 mI = I を示せば、中山の補題より I = 0 となる。 mI ⊂ I は明らかだから I ⊂ mI を示す。 mI = q_1 ∩ ... ∩ q_r とする。ここで、各 q_i は準素イデアル。 ある i に対して、I ⊂ q_i とならないと仮定する。 mI ⊂ q_i だから m の各元は mod q_i で零因子となる。 よって、{m} = Ass(A/q_i) である。 よって、m^n ⊂ q_i となる整数 n > 0 がある(>>168)。 一方、I = ∩m^n だから I ⊂ m^n である。 よって、I ⊂ q_i となって矛盾。 証明終