補題 A を環、M を有限生成 A-加群とする。 N を M の部分加群で N ≠ M とする。 N を含む M の極大部分加群が存在する。
証明 N を含む M の部分加群で M と異なるものから構成される 全順序集合(包含関係による) S があるとする。 S の要素全体の和集合 L は M の部分加群で M と異なる。 何故なら M = L とすると L は M の有限個の生成元を含むから S の要素で M と一致するものがあることになり矛盾。 よって Zorn の補題より N を含む M の極大部分加群が存在する。 証明終