[表示 :
全て
最新50
1-99
101-
201-
301-
401-
501-
601-
701-
801-
901-
1001-
2chのread.cgiへ
]
Update time : 10/18 11:18 / Filesize : 321 KB / Number-of Response : 1002
[
このスレッドの書き込みを削除する
]
[
+板 最近立ったスレ&熱いスレ一覧
:
+板 最近立ったスレ/記者別一覧
] [
類似スレッド一覧
]
↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました
代数的整数論
185 名前:
208
[2005/10/03(月) 11:32:46 ]
A をネーター環、M を A-加群、N をその部分加群とする。
Ass(M) ⊂ Ass(N) ∪ Ass(M/N) となる。
証明
p ∈ Ass(M) とする。M の部分加群 L で A/p と同型になるものが
ある。 L ∩ N が空でなければ、p ∈ Ass(L ∩ N) ⊂ Ass(N)
となる。L ∩ N が空なら、L は (L + N)/N ⊂ M/N と同型。
よって、p ∈ Ass(M/N) となる。
証明終
[
続きを読む
] / [
携帯版
]
全部読む
前100
次100
最新50
▲
[
このスレをブックマーク! 携帯に送る
]
2chのread.cgiへ
[
+板 最近立ったスレ&熱いスレ一覧
:
+板 最近立ったスレ/記者別一覧
]
(;´∀`)<321KB
read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) /
eucaly.net
products.
担当:undef