- 158 名前:208 [2005/09/27(火) 16:03:24 ]
- 命題
A をネーター環とし、Mを A-加群とする。 N を M の部分加群とする。 N が準素部分加群でなければ、N は可約である。 証明 M を M/N に置き換えて N = 0 と仮定してよい。 よって、Ass(M) に属す素イデアルで互いに異なる p, q がある。 p = Ann(x), q = Ann(y) となる元 x, y ∈ M がある。 Ax は A/p に A-加群として同型だから、Ass(A/p) = {p} となる。 同様に Ass(A/q) = {q} である。 Ass(Ax ∩ Ay) ⊂ Ass(A/p) ∩ Ass(A/q) だから、Ass(Ax ∩ Ay) は 空集合である。よって、Ax ∩ Ay = 0 証明終
|

|