A をネーター環とし、Mを A-加群とする。 N を M の部分加群とする。 Ass(M/N) が1個の素イデアルのみからなるとき、N を M の 準素(primary)部分加群という。Ass(M) が1個の素イデアルのみから なるとき、つまり {0} が M の準素部分加群となるとき、 M を余準素(coprimary)加群という。
M の部分加群 N が真に大きい部分加群の共通部分になるとき、 つまり、N = N_1 ∩ N_2, N ≠ N_1, N ≠ N_2 となる部分加群 N_1, N_2 があるとき、N を可約部分加群という。可約でないとき 既約という。