- 1 名前:132人目の素数さん mailto:sage [2011/10/03(月) 20:05:44.00 ]
- 数学基礎論は、素朴集合論における逆理の解消などを一つの動機として、
19世紀末から20世紀半ばにかけて生まれ、発展した数学の一分野です。 現在では、証明論、再帰的関数論、構成的数学、モデル理論、公理的集合論など、 多くの分野に分かれ、極めて高度な純粋数学として発展を続けています。 (「数学基礎論」という言葉の使い方には、専門家でも若干の個人差があるようです。) 応用、ないし交流のある分野は、計算機科学の諸分野や、代数幾何学、 英米系哲学の一部などを含み、多岐にわたります。 (数学セミナー98年6月号、「数学基礎論の学び方」 ttp://www.math.tohoku.ac.jp/~tanaka/intro.html 或いは 岩波文庫「不完全性定理」 6.4 数学基礎論の数学化 などを参照) 従ってこのスレでは、基礎的な数学の質問はスレ違いとなります。 他のスレで御質問なさるようにお願いします。 前スレ 数学基礎論・数理論理学 その8 kamome.2ch.net/test/read.cgi/math/1309406249/
- 151 名前:132人目の素数さん mailto:sage [2011/10/07(金) 14:42:20.18 ]
- 円周率の中に例えば20個連続した7があるかどうか決められてるっていうところとか
有界の単調増加数列で区間を2等分して数列が存在してる方の右側区間を選んでいけば 上限値が決められるっていうところも自然数全体を数え切ったうえでないと区間に 点列が存在するかどうかなど決められるわけがない だとすれば自然数には最終項がなければいけないのに自然数の定義から矛盾が生じると いって排除されてしまう ここのところをどうやって実数とか排中律を理解していけばよろしいのでしょうか?
- 152 名前:132人目の素数さん [2011/10/07(金) 15:59:37.00 ]
- >>151
リトルウッドという数学者が、ある定理(Aとする)を証明するのに、 「リーマン予想が真ならばAが成り立つ。リーマン予想が偽ならAが成り 立つ。よってAが成り立つ」という論法を使ったことがあるそうです。
- 153 名前:132人目の素数さん mailto:sage [2011/10/07(金) 20:03:29.46 ]
- >>147
(自然数と有理数は一対一対応があるのに) 自然数と実数は一対一対応がないから、 濃度に複数あることは認めざるを得ないのでは? 認めない立場なら実数をあきらめないといけない。
- 154 名前:132人目の素数さん mailto:sage [2011/10/07(金) 20:23:04.83 ]
- >>146
同感です。 述語論理の関数・述語記号は、 関数と述語が入る変数。 ですから述語論理の完全性は どんな関数や述語でも成り立つような規則なんです。 一方で理論特有の完全性定理とは、 何らかのモデルで具体的な関数・述語を解釈した場合の規則。 ですからこの2つ完全性定理の完全性は定義が異なるんです! さらに不完全性定理の完全性もまた定義が異なる! つまるところ3つの完全性があることに注意しなければならないんです^^;
- 155 名前:132人目の素数さん mailto:sage [2011/10/07(金) 20:24:19.55 ]
- >>152
排中律に∨elimを組み合わせたわけだな
- 156 名前:132人目の素数さん mailto:sage [2011/10/07(金) 21:29:14.39 ]
- >>152
その証明中にリーマン予想の真偽が有効に使われているんなら面白いな。 どんなモデルでも成り立つなら形式的証明が可能、って何か不思議だね。 理論Tの中で文Aを証明しようとして、 モデルの全要素数が偶数のとき、奇数のとき、無限のとき、いずれもAが成り立つ がそれぞれ言えればAが証明できたことになる。 でもTが弱くて要素の数なんて概念を表現できないときは、この議論を形式的証明に翻訳 することはできないよね。 それとも必ず別な証明方法があるってこと?
- 157 名前:132人目の素数さん mailto:sage [2011/10/07(金) 22:01:04.57 ]
- >>150
近頃の大学じゃそんなマニアックなことまでやらないよ
- 158 名前:132人目の素数さん [2011/10/07(金) 22:13:19.25 ]
- キヨスクに集合論独立性証明へが並ぶ日は遠いだろうな
- 159 名前:112 [2011/10/08(土) 01:10:39.25 ]
- なんか釣り文書いてしばらく立ったら予想以上の収穫だったので種明かし。
俺は>>112の1段落で述語論理の健全性と完全性の議論をしている。 ところで3段落ではPAという理論についての健全性と完全性を議論している。 もちろん標準モデルを非明示的に仮定している。 つまりΣ1完全性定理のことで、これを受けて 第1不完全性定理がΠ1文の中に存在する具体的な論理式の存在を直接言及することを指摘した。 随分レスも伸びたしこのスレを自分が掌握していることを再確認した。
- 160 名前:132人目の素数さん mailto:sage [2011/10/08(土) 01:30:53.66 ]
- >>159
2chで釣り宣言をやるのはかなりの… ソーカル事件みたいに実名でやるなら有効だけど。
- 161 名前:132人目の素数さん mailto:sage [2011/10/08(土) 04:59:28.54 ]
- >>112
一人で悦に浸っているところ恐縮だが、 君がその釣り文書書く前(つまり112以前)から、 同じような釣りがあって釣られているレスがあったわけなんだが
- 162 名前:132人目の素数さん mailto:sage [2011/10/08(土) 05:52:27.72 ]
- >>159
どうせ騙るならもっと昔のレス番騙ればよかったんじゃね
- 163 名前:132人目の素数さん mailto:sage [2011/10/08(土) 08:01:55.66 ]
- >>159
tsumaran >>156 偶数、奇数、無限なんて場合分け普通あるか?
- 164 名前:132人目の素数さん mailto:sage [2011/10/08(土) 09:37:13.30 ]
- >>149
わからんなどうも α+1>αを満たすにしても、αが先ずはっきりしてないと定義出来ないんじゃねーの? そもそもαが無限だって言うならα+1自体がαになるからα+1は記述は出来ても存在しないんでね? α+1>αが成り立ってるうちは可算の域を出てないだろ・・・ 教授クラスの人説明キボン
- 165 名前:132人目の素数さん mailto:sage [2011/10/08(土) 10:00:44.02 ]
- >>164
>α+1自体がαになる 濃度の大小と「+1」を混同してるだろ? >>147はお前だよな? >勝手に1を加えていってω_1、ω_2・・・としていく の「1を加える」って言葉をあいまいに使ってるから誤解が発生するんだよ。
- 166 名前:132人目の素数さん [2011/10/08(土) 10:45:30.57 ]
- >>164
加えてるのは自然数の1じゃないんだ 自然数は無限数えるためのカウントに使ってるってことなんだな 濃度の大小が異なる順序数をソートしてるだけんだよ
- 167 名前:132人目の素数さん mailto:sage [2011/10/08(土) 11:07:23.33 ]
- 後続関数も分からん、学習する気もない糞馬鹿なぞ相手にするな。
恐らくパアのβだろう。
- 168 名前:132人目の素数さん [2011/10/08(土) 11:22:13.26 ]
- 要は順序数同士の大小は濃度を比較しているのではない、ということ。
あとは定義を読めばわかる。
- 169 名前:132人目の素数さん mailto:sage [2011/10/08(土) 11:37:03.43 ]
- >>147
「+1」と「添え字の1」をごっちゃにするなよ。 こうだ ω、ω+1、ω+2、・・・・・・・・・、ω_1、ω_1+1、ω_1+2、・・・・・・・・・、ω_2、ω_2+1、ω_2+2、・・・・・・・・・ |-------------------- |------------------------ |------------------------´ 同じ濃度 同じ濃度 同じ濃度
- 170 名前:132人目の素数さん mailto:sage [2011/10/08(土) 11:42:24.70 ]
- 馬鹿に集合論は無理
- 171 名前:132人目の素数さん mailto:sage [2011/10/08(土) 12:42:24.77 ]
- 誰か>>156を教えて
- 172 名前:132人目の素数さん mailto:sage [2011/10/08(土) 12:50:26.16 ]
- β=東大 AGE
これは方程式では無く恒等式。
- 173 名前:132人目の素数さん [2011/10/08(土) 13:18:27.92 ]
- >>156
もうちょっとステートメントを厳密に言わないと無用の混乱を招くよ
- 174 名前:132人目の素数さん mailto:sage [2011/10/08(土) 13:29:56.10 ]
- >171
Tは要素のパリティを表現できる程度の強さが必要なんじゃね?双対とかそんな感じの。 あと蛇足だけど、偶数の無限と奇数の無限があるから、偶数奇数と無限を切り離して考えるのは無意味。
- 175 名前:132人目の素数さん mailto:sage [2011/10/08(土) 13:35:28.70 ]
- >>164
ttp://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 >数学でいう順序数(じゅんじょすう、ordinal number)とは、 >整列集合同士の"長さ"を比較するために、自然数[1]を拡張させた概念である。 (中略) >整列集合 (A, <) に対して、A を定義域とする関数 G を超限再帰によって >G(a) = { G(x) | x < a } >と定義したとき、G の値域 ran(G) を (A, <) の順序数といい、これを ord(A, <) で表す。 >ある整列集合の順序数であるような集合を順序数と呼ぶ[2]。 (中略) >8. 順序数の和は一般には可換でない。例えば、1 + ω = ω ≠ ω + 1 である。 (中略) >9. 順序数の積は一般には可換でない。例えば、2 · ω = ω ≠ ω · 2 である。
- 176 名前:151 mailto:sage [2011/10/08(土) 15:14:07.22 ]
- >>152
選択公理使って矛盾が出れば使わなくても矛盾が出るとかいうことですしょうか? すみません、そういうのは難しくて理解できないので別の方法で何とか >>151を理解出来る方法はないんでしょうかね...
- 177 名前:132人目の素数さん [2011/10/08(土) 15:26:55.25 ]
- スレッドのタイトルの件だが
>>11 >ロジックに興味のある高校生・専門外の人にはオープンにしたいよね。 ↑いま「ロジック」って云ったよね? つまりその言葉で通じるってことだよね? 英語では、Mathematical logic(数学的論理学)といえば set theory(集合論)も、model theory(モデル理論)も、 recursion theory(帰納理論)も、proof theory(証明論)も、 含むんだよ。 集合論は論理じゃないなんて馬鹿なこという奴はいない。 むしろFoundations of mathematicsのほうは、 数学における哲学的態度である Platonism(実在主義)、Formalism(形式主義)、 Intuitionism(直観主義)、Logicism(論理主義)、 等を取り扱うものであるわけだ。 日本で「数学基礎論」という言葉が用いられるようになったのは ヒルベルトとベルナイスによる本"Grundlagen der Mathematik" によるところが大きいと思われるが、いまさらヒルベルト計画に 関心をもってロジックをやる奴なんてまずいない。 もう、数学基礎論はやめにしようぜ。 岩波で「数学基礎論」ってタイトルの本が出たから とかいうのは、全然理由にならないよ。
- 178 名前:132人目の素数さん [2011/10/08(土) 15:36:54.38 ]
- >数学基礎論は、素朴集合論における逆理の解消などを一つの動機として、
>19世紀末から20世紀半ばにかけて生まれ、発展した数学の一分野です。 これは正しくないよな。少なくともブール論理を無視している。 フレーゲの概念記法は、集合論とは直接関係ない。 そしてラッセルのパラドックスも、フレーゲの理論に対して 指摘されたものであって、集合論に対するものではない。 カントルは、内包公理を主張したわけではない。 (だから内包公理から矛盾が導かれても、カントルの集合論が 直接ダメージを受けるわけではない。) ツェルメロの公理的集合論は、カントルの理論を明確化しただけ。 (分出公理の提案は、内包公理から出る矛盾の解決の為、 ということではない。)
- 179 名前:132人目の素数さん [2011/10/08(土) 15:42:03.55 ]
- 1の文章は、少なくとも
「数理論理学は、証明論、再帰理論、モデル理論、公理的集合論等、 多くの分野に分かれ、純粋数学として発展を続けています。」 で十分。極めて高度な、も不要。言わずもがな。 タイトルで「数学基礎論」といわなければ 「従ってこのスレでは、 基礎的な数学の質問は スレ違いとなります。 」 という文章は無用。
- 180 名前:132人目の素数さん [2011/10/08(土) 15:52:26.47 ]
- 私の考える案は以下の通り
タイトル:数理論理学 その** 序文: 数理論理学は、ブール論理、フレーゲの概念記法、 カントールの集合論、等を嚆矢として、現在では、 証明論、再帰理論、モデル理論、公理的集合論等、 多くの分野に分かれ、純粋数学として発展を続けて います。また代数幾何学等、他の数学の分野、 計算機科学等、他の学問領域とも関連しています。
- 181 名前:132人目の素数さん mailto:sage [2011/10/08(土) 16:41:56.26 ]
- >>177
>>>11 >>ロジックに興味のある高校生・専門外の人にはオープンにしたいよね。 > >↑いま「ロジック」って云ったよね? >つまりその言葉で通じるってことだよね? 詭弁を弄するな。 >>11のその発言はこのスレッドの住人に対してであって 「ロジックに興味のある高校生・専門外の人」相手ではない
- 182 名前:132人目の素数さん mailto:sage [2011/10/08(土) 17:09:55.24 ]
- >>181
詭弁ではないな。 大体、数セミで竹内外史とかの 「数学基礎論とはヒルベルトプログラムのことだ!」 という宣伝文句しか読めなかった世代(今やリッパな中年) の常識を、今時の若いモンに押し付けるのは犯罪行為w
- 183 名前:132人目の素数さん mailto:sage [2011/10/08(土) 17:10:20.48 ]
- きっと>>178は国語の成績が1だったと思われる。
>>数学基礎論は、素朴集合論における逆理の解消などを一つの動機として、 >>19世紀末から20世紀半ばにかけて生まれ、発展した数学の一分野です。 > >これは正しくないよな。少なくともブール論理を無視している。 >フレーゲの概念記法は、集合論とは直接関係ない。 >そしてラッセルのパラドックスも、フレーゲの理論に対して >指摘されたものであって、集合論に対するものではない。 ブール論理を無視するとどうして正しくなくなるんだろうか? 引用してるテンプレの部分に「素朴集合論の逆理」という言葉は出てくるけど ラッセルのパラドックスともフレーゲの理論も出てこない。 その後の文章は「素朴集合論」=「カントールの集合論」という前提があるようだけど、 テンプレの正しくないと主張する部分にそんなことは書いていない。 つーか、ラッセルのパラドックスは最初はフレーゲの理論に対して指摘されたかもしれないが、 全く同じ論法で素朴集合論における逆理を作れるのだからそれをラッセルのパラドックスと読んで差し支えない。
- 184 名前:132人目の素数さん mailto:sage [2011/10/08(土) 17:28:20.29 ]
- >>182
「詭弁ではない」と唱えれば詭弁じゃなくなるわけじゃないよ。 根拠を説明できないとね、小学生でも知ってるキホンだよ。
- 185 名前:132人目の素数さん mailto:sage [2011/10/08(土) 17:29:17.89 ]
- >>183
残念ながら国語の成績は5だった。 1でいう「数学基礎論」が、mathematical logicとしての 数理論理学であるなら、その淵源の中にはブール論理もあるし フレーゲの概念記法もある。これらは集合論とは関係ない。 「素朴集合論の逆理」というのも正しくない。 「素朴集合論」が「カントールの集合論」とは異なるのは当然だが それでは「素朴集合論」とは誰がいつどこで言い出したものか 明確に示されたい。おそらく不可能かと思うがw
- 186 名前:132人目の素数さん mailto:sage [2011/10/08(土) 17:33:39.32 ]
- >>183
>つーか、ラッセルのパラドックスは >最初はフレーゲの理論に対して >指摘されたかもしれないが、 かもしれない、ではなく、明確にそうである。 根拠を確かめもしない君は、小学生でも知ってるキホンを 公然と無視した点で、リッパな幼稚園児だな。 ちなみに、私は幼稚園には行かなかった。 >全く同じ論法で素朴集合論における逆理を作れる >のだからそれをラッセルのパラドックスと読んで >差し支えない。 そう呼ぶのは勝手だが、その場合、歴史とは無関係になる。 つまり、君は歴史を改竄したわけだ。
- 187 名前:132人目の素数さん mailto:sage [2011/10/08(土) 17:49:05.18 ]
- >>全く同じ論法で素朴集合論における逆理を作れる
>>のだからそれをラッセルのパラドックスと読んで >>差し支えない。 > >そう呼ぶのは勝手だが、その場合、歴史とは無関係になる。 >つまり、君は歴史を改竄したわけだ。 これを歴史の改竄というのなら、人名の付いた数学用語なんて大多数が歴史の改竄だよ。 というか数学の世界では、こういう意味での歴史の改竄なんて気にしないしむしろ積極的にやる。 こういうことを問題視するのなら歴史板にでも帰り給え。
- 188 名前:132人目の素数さん mailto:sage [2011/10/08(土) 17:58:07.03 ]
- 文kei、屑哲大暴れ。
- 189 名前:132人目の素数さん [2011/10/08(土) 17:58:12.87 ]
- 用語や概念を慎重に取り扱うあまり、それらを粗雑に扱う人間に対し
大罪をおかしたかのような言葉を浴びせる人がいますね。
- 190 名前:132人目の素数さん mailto:sage [2011/10/08(土) 18:21:45.30 ]
- 「詭弁ではない」の根拠は?小学生未満だと自己認定?
都合の悪い話には無視したままかよ。
- 191 名前:132人目の素数さん mailto:sage [2011/10/08(土) 19:11:08.41 ]
- その屑哲、最初は「公理的集合論・数理論理学」を推してたでしょ。
でも「公理的集合論・数理論理学」スレでこのスレタイ論破されちゃったから 今度は「数学基礎論・数理哲学」ってスレ立てて暴れているみたいだな。
- 192 名前:156 mailto:sage [2011/10/08(土) 19:33:04.90 ]
- >>173
ステートメントを厳密にですか・・・ ↓ Tは一階の理論。文Aが任意のモデルで成立するが、それを示すために モデルの要素数や、もっと踏み込んだ性質(偶数か奇数か等)に言及しているとする。 (初等群論とかで位数が素数のベキかどうかで場合わけするようなパターン) Tは弱い理論で、そんな性質を表現できそうな関数や述語を持っていない。 それでも完全性定理によって文Aの形式的証明が存在するはず。 これはモデルの要素数などに言及しない別な証明方法が必ずあるってこと? >>174 >偶数の無限と奇数の無限 ?
- 193 名前:132人目の素数さん mailto:sage [2011/10/08(土) 19:34:04.65 ]
- ゲラゲラ
- 194 名前:132人目の素数さん [2011/10/08(土) 20:02:26.87 ]
- >>192
私は上で書き込んだ人間じゃないんだけど、 例えば領域の濃度が有限で偶数・有限で奇数・可算無限の3つのモデルで 文Aが成り立つとき、AはTから証明可能なんだけど、 逆に文Aが成り立つモデルの領域の濃度がどうなっているかは 一般に決まらない。 これが原因でモデルが無限次元ベクトルでも1次元ベクトルでも 共通する性質を論理式に翻訳しちゃうと、 逆に論理式からベクトル次元がどうなっているのか分からなくなってしまう。 これを避けるために1階論理を拡張した多領域論理というのがある。
- 195 名前:132人目の素数さん mailto:sage [2011/10/08(土) 20:37:45.31 ]
- >>187は国語の成績が1だったな。確実に。
ラッセルのパラドックスの系として、 「素朴集合論」の矛盾が示せる、としても その素朴集合論とやらが、数学の歴史上の どこにも現れないのだから、 「素朴集合論における逆理の解消」 を動機とする、という記述が、 歴史の改竄だといっているわけだ。 「数学者だから数学の歴史を改竄する権利がある」といったら 数学者を含む全世界の人間から嘲笑される。確実に。
- 196 名前:132人目の素数さん mailto:sage [2011/10/08(土) 20:43:08.86 ]
- >>191
妄想乙。 残念だが、私は公理的集合論スレッドには書き込んでいない。 今、拝見したが、ロンパ君の主張は 「公理的集合論だって数理論理学の一分野!」 「公理的集合論だけ数理論理学から分けて記載するのは不適切! 」 につきるらしい。 なら 「数理論理学 その9」 なら問題ないわけだw。
- 197 名前:132人目の素数さん mailto:sage [2011/10/08(土) 20:47:35.99 ]
- >>186を>>195で解説されているように読解しろというのは都合よすぎだろ。
自分で186を読み返してみろよ。195のように読めないから国語が1だって笑わせるなよ。
- 198 名前:132人目の素数さん mailto:sage [2011/10/08(土) 21:00:08.57 ]
- >>197
読解できないのは貴様の頭が悪いから。 いや悪いのは頭じゃなくて心か。
- 199 名前:132人目の素数さん mailto:sage [2011/10/08(土) 21:24:01.03 ]
- Rossor定義でのTの無矛盾性を表す論理式が証明可能な意味が分からん
ゲーデルの第2不完全定理と矛盾しないの?
- 200 名前:132人目の素数さん mailto:sage [2011/10/08(土) 21:24:03.43 ]
- 「ラッセルがフレーゲの理論に対して指摘したのと同じ種類の方法で作られる素朴集合論のパラドックス」
を「ラッセルのパラドックス」と呼ぶことは「歴史の改竄」だと屑鉄君はまだ主張するのかな?
- 201 名前:132人目の素数さん mailto:sage [2011/10/08(土) 21:30:28.43 ]
- >>200
「ラッセルがフレーゲの理論に対して指摘したのと 同じ種類の方法で作られる素朴集合論のパラドックス」 とやらについて、あたかも素朴集合論がカントールの集合論 であるかのごとく語り、カントールの集合論が矛盾したから、 数学界が慌てふためいたのだと語るのが、歴史の改竄だと 哲学のテの字も知らん、数学科卒、修士課程修了の私は 主張している。
- 202 名前:132人目の素数さん mailto:sage [2011/10/08(土) 21:40:08.47 ]
- 不完全性定理についてのクリプキのバージョンについてどこで見れますかね?
- 203 名前:132人目の素数さん mailto:sage [2011/10/08(土) 21:40:26.38 ]
- 186はどう読んでも
「ラッセルのパラドックス」と呼ぶことが「歴史の改竄」である としか読めないのだがね
- 204 名前:132人目の素数さん mailto:sage [2011/10/08(土) 21:50:44.76 ]
- >>203
頭が悪い。(終)
|

|