- 571 名前:566 mailto:sage [2011/04/26(火) 22:10:07.14 ]
- >>569
「ある公理系Sの中の公理(推論規則)Aが「独立」である。」 というのは、その公理系SからAを取り除いた 公理系Tの公理・推論規則とそれから証明可能な式だけで Aを証明できないことをいう。 さらにその公理系Sの中のすべての公理と推論規則が独立なら 公理系Sは独立。 という主張をうまく書こうとしたところ変な文章になっただけです。 なぜ、「Aも¬Aも証明できないときに「独立」」という定義に しないかといえば、 ¬という記号が公理系で必ずしも定義されているか不明だからです。 (公理的集合論やるなら気にしなくてもいいかもしれませんが。) 例えば¬AがA→⊥のメタ理論的な略記だとしても、 ⊥が公理・推論規則に含まれていないために、 単なる命題変数になっている場合もあるかもしれません。 それから3値論理はそういう方法もありますよ、位に行っただけです。 一般的に独立を証明する巧い手段は知りません。
|

|