[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 12/23 21:55 / Filesize : 540 KB / Number-of Response : 668
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文と乗数イデアル他関連資料スレ18



177 名前:一般教養数学担当 講師A [2025/06/15(日) 06:48:54.70 ID:4G/uUJn/.net]
>>176
>高木は おそらく教育的配慮から”区間[a,b]”に限定した設定としたのだろう

「おそらく・・・のだろう」は要らんよ
そういう言葉をつけるのは、どういう「教育的配慮」か、全然わかってない証拠

>では、この”区間[a,b]”の設定を外して
>抽象的な距離空間で 同様の命題が成り立つか否か?
>これは、自然な設問として 誰しも考えることだろう

「だろう」は要らんよ

>その答えが、173-174 であり 165-166だということよ

君、ここで「だろう」をつけないから、いつまでも理解できないままなんだよ
それは上記のコピペの中身が全然理解できなくて勝手にそう思いこんでる証拠だろ?

一様連続なら拡張できる それはウソではないよ
そして
1)Q上連続でも一様連続でない関数で、R上連続関数に拡張できない関数が存在する
(例、x^2<2で0 x^2>2で1となる関数)
一方
2)Q上連続だが一様連続でない関数で、R上連続関数に拡張できる関数が存在する
(例、x^2)

故に
問.Q上連続だが一様連続でない関数のうち、
R上連続関数に拡張でき、その拡張が一意的となる
必要十分条件はなにか?
を考えるのは当然である
(「だろう」は馬鹿語)

>従って、いま必要なことは、まず、173-174 & 165-166 を読み込むべし ってことだ

君はね
私は必要ない すでに読み込んで分かってしまったから
そして、その中に上記の問の答えは書かれてないこともね

答を書いておくから、理解できるまで読み込むべし!

問 Q上連続だが一様連続でない関数のうち
Q上の任意の閉区間で一様連続であるとき、そのときに限り
R上連続関数に拡張でき、その拡張は一意的である

>オチコボレさんは、数学イップスが治癒しかかっているがいまだ完治せず らしい
> 173-174 & 165-166 が、読めないらしい

リアルオチコボレの君は、そもそも基本ができていない
腕だけでバットを振り回しても、打球は外野まで飛ばないよ 腰を回すんだ
憶測だけでは、文章の中身は理解できないよ 論理を読み取るんだ

国語から勉強しなおしてな

君が数学板に書き込むのは・・・200年早い(ビシッ!)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<540KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef