[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 12/23 21:55 / Filesize : 540 KB / Number-of Response : 668
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文と乗数イデアル他関連資料スレ18



165 名前:現代数学の系譜 雑談 [2025/06/12(木) 22:33:50.88 ID:EWvjXceg.net]
>>155
>2)は、必要条件を求める問題、もちろん有界閉区間での知見を「陽」に使ってよい
>っていうか「陽」につかわないって馬鹿?

ふっふ、ほっほ
下記のAI による概要で
”Theorem:
Let X and Y be metric spaces, S a subset of X, and f: S -> Y.
If f is uniformly continuous and Y is complete, then there exists a unique continuous extension of f to ¯S (the closure of S).
Furthermore, this extension is uniformly continuous.”と言ってますよ
”有界閉区間”の条件はありません!!w ;p)
<キーワード>
数学 距離空間 稠密 関数 一様連続 拡張
 ↓英訳
Mathematics Metric space Dense Function Uniform continuity Extension
 ↓検索 googleさん
AI による概要(AI responses may include mistakes. Learn more)
In the context of metric spaces, if a function f is uniformly continuous on a dense subset S of a complete metric space X, then f can be extended to a uniformly continuous function F defined on the entire space X. This theorem is a powerful tool for extending functions from dense subsets to the whole space while preserving uniform continuity, which is crucial in many mathematical applications.

Key Concepts and Definitions:
Metric Space:
A set equipped with a distance function (or metric) that satisfies certain properties.
Dense Subset:
A subset where every point in the larger space is either in the subset or can be approached arbitrarily closely by a point in the subset.
Uniformly Continuous Function:
A function where the distance between the function values of two points can be made arbitrarily small as long as the distance between the two points is small, regardless of where those points are in the domain.

Complete Metric Space:
A metric space where every Cauchy sequence (a sequence that gets arbitrarily close to each other) converges to a point in the space.
Theorem:
Let X and Y be metric spaces, S a subset of X, and f: S -> Y.
If f is uniformly continuous and Y is complete, then there exists a unique continuous extension of f to ¯S (the closure of S).
Furthermore, this extension is uniformly continuous.

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<540KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef