- 687 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [2025/05/23(金) 21:03:38.81 ID:cdCv3SZj.net]
- >>496 戻る
>自分は、1のp条根を、べき根でどう解くか、書いてあるHP読んで >可解性ってそういうことだったんだぁと、理解しましたね >まあ、たぶん教科書にもどっかに書いてあるんだろうけど そこな 君が言っているのは Lagrange resolvent による 1のp条根のべき根解法だったね そこね 下記のはてなブログ 〜3次・4次方程式のresolvent編〜 『そんなわけで、Lagrange resolventは面白いが、方程式を解くのに使える万能薬ではないのである』 を 百回音読してかみしめてね そして、その後ろに引用した 彌永 第3章 ガロアの主著の ガロア分解式 V = Aa+Bb+Cc+… を百回音読して 噛みしめてw ;p) (参考) https://peng225.hatenablog.com/entry/2018/02/12/223452 ペンギンは空を飛ぶ 2018-02-12 5次方程式の解を巡る旅 〜3次・4次方程式のresolvent編〜 Resolventを用いた方程式の解法 3次方程式の場合 Resolvent invariant 4次方程式の場合 f(x)の根をx1, x2, x3, x4 としたとき、resolvent invariantとして以下の式を考えてみる。 τ1=x1x2+x3x4 τ1は二面体群D4=⟨(1 2), (1 3 2 4)⟩ の作用に対しては不変であるが、それ以外の置換を作用させると以下のどちらかの式に変化する。 おまけ:Lagrange resolventとは 本筋とはあまり関係ないが、最後にLagrange resolventの話をしておこうと思う。私は本件の調査を始めるまで、高次方程式を解くにはLagrange resolventというすごいやつを使えば良いのだと思っていたが、実はそうではない。ここで今の私の理解を整理しておく。 略す 実は3次方程式を解く際に登場したU, VはLagrange resolventになっている。そのため、これらを3乗すると(3−1)!=2 通りの式に変化したと言うわけである。 一方、4次方程式ではLagrange resolventを利用していない。それは、変化のパターンが(4−1)!=6 通りとなってしまい、4次方程式を解くために6次方程式を解かなければならなくなるからである。 そんなわけで、Lagrange resolventは面白いが、方程式を解くのに使える万能薬ではないのである (引用終り) さて、そこで ガロアは考えたのだ 『彌永 「ガロアの時代 ガロアの数学」 第二部 数学篇 第3章 ガロアの主著』より P235 補助定理II 重根のない任意の方程式が与えられたとし, a,b,c,..、 をその根とする.そのときこれらの根の(有理整)関数Vを作 り,(Vにおいて)根(a,b,c,・・
|

|