- 326 名前:132人目の素数さん mailto:sage [2025/05/14(水) 16:46:54.50 ID:ckJ79ZRm.net]
- γを無理数と仮定する
仮定から、実数直線R上の無理数γの任意の近傍に属し、γに十分近い 可算無限個の 57/100<q/p<γ なる有理数 q/p q>57 p>100 に対して γ∈(q/p、q/p+1/p)⊂(57/100、58/100) である。また、q/p+1/p<58/100 だから、 γ−(q/p+1/p)>γ−58/100 =lim_{n→+∞}(1+1/2+…+1/n−log(n))−58/100 =(1+1/2+1/3+1/4+1/5+1/6+1/7−log(7)−58/100)+lim_{n→+∞}(1/8+…+1/n+log(7)−log(n)) =(2+1/4++1/5+1/7−58/100−log(7))+lim_{n→+∞}(1/8+…+1/n+log(7)−log(n)) =(2+315/700+100/700−406/700−log(7))+lim_{n→+∞}(1/8+…+1/n+log(7)−log(n)) =(2+9/700−log(7))+lim_{n→+∞}(1/8+…+1/n+log(7)−log(n)) >0 しかし、γ<q/p+1/p だから、γ−(q/p+1/p)<0 よって矛盾が生じる。この矛盾はγを無理数と仮定したことから生じたから、背理法によりγは有理数である 大雑把だが、γの有理性の証明はこのような証明になる
|

|