- 13 名前:132人目の素数さん mailto:sage [2025/05/07(水) 15:43:35.06 ID:UuTgToOW.net]
- 第1章 連立線形方程式
1.1 ベクトルとその演算 数:実数とする (n次の)数ベクトル:数を(n個)縦に並べたもの 成分:ベクトル内の各数 上から数えてi番目を第i成分と呼ぶ ベクトルの和:各成分ごとに足す スカラー:数 ベクトルのスカラーc倍:各成分にスカラーcを掛ける 和とスカラー倍の関係 零ベクトル:各成分が0 ベクトル空間:ベクトル全体の集合 ベクトルa1,…,anの線形結合:ベクトルのスカラー倍の和c1a1+…+cnan ベクトルa1,…,anが張る空間:ベクトルa1,…,anの線形結合全体の集合 線形独立:c1a1+…+cnan=0となるスカラーはc1=…=cn=0に限る 線形従属:c1a1+…+cnan=0となるスカラーc1,…,cnに0でないものがある ここでは数ベクトル空間を定義しており、まだ、一般の線形空間は出てこない とはいえ、線形独立、線形従属の概念は定義される まあ、このくらいはついこないだまで高校生だった学生でも読めるな さすが、導入に配慮してます
|

|