- 817 名前:我々の知っている実数を定義することを見ていく.
この際にキーになるのは「同値類」の概念である.以下ではこの「同値類」のお陰で,この定義がうまく行っている事を見るだろう. (注)上では実数をコーシー列の同値類と定義したわけだが,この狙いは以下の通りである.いま,α=[{an}],つまりαとは代表元が{an}というコーシー列であるような「コーシー列の同値類」であるとしよう.実のところ,ここではα “=” lim n→∞ an (3.2.5)を狙っているのである.つまり,「実数は有理コーシー列の同値類」とは言ったけども,実際には「実数はその有理コーシー列の極限」と定義したいのだ.しかし,今は実数を定義している途中であるから,考えているコーシー列は有理数の中に極限を持つとは限らない.(いや,正直,有理数の中に極限を持たないコーシー列の方が濃度の意味で多い.)これでは上の極限を使った定義はできない.仕方ないので,頭の中では「この数列の極限が実数なんだよ」と思いつつ,「この数列の同値類が実数」と言っているのである.実際,以下で実数の四則演算などを定義する際,結局は「この数列の極限」にしか興味のない定義になっている事がわかるだろう.(注)上で用いた同値関係(3.2.3)は何を狙っているのかというと,数列{xn}と数列{yn}の極限が等しい,ことを狙っているのだ.ただし,上に書いたように,有理数の範囲では「極限」が存在しないことがほとんどだから,実数を定義するまでは極限を全面に出す訳には行かない.仕方ないので,このようにややこしい書き方になっている. P24 3.2.2 同値類の実際の形 同値類がよく見えないという人もいると思うので,ちょっと余分なことを書いておく. 略す 3.3 実数の四則演算 P30 3.4 実数の順序(大小)と絶対値 P36 3.5 実数における極限の定義 以上で実数体を大体構成した.これで漸く,普通の極限の話に戻れる.極限の定義などは通常のように行うのだが,「実数」そのものが「有理数のコーシー列」だと定義されているので,ちょっと変な感じがするかもしれない.少し丁寧に見ていく事にする. 略す P37 3.6 コーシー列の収束証明 普通の実数の四則演算ができたので,このような普通の定義でかなりの部分の話はうまく進む.うまく進まない可能性があるのは,実数の連続性とコーシー列に関連した話題だ.コーシー列から実数を構成した今の流れでは,まずは「コーシー列の収束性」を示してから「実数の連続性」「上限・下限の存在」などに進むのが良い.コーシー列の定義は今まで通り, 略す 定理3.6.2 (コーシー列は収束する) 略す (引用終り) つづく [] - [ここ壊れてます]
|

|