- 113 名前:oopener noreferrer" target="_blank" class="reply_link">>>92の”{} R {{}} R {{{}}} R {{{{}}}} R ・・・”は、外延的記法で 順序を列記したと思え!!w ;p)
それを、集合論ど素人が 内包表記でないから といって ばかなイチャモンつけているとしか思えない なお、内包表記でなら カッコ{}の多重度を使って {} :{}多重度1→ 順序数0 {{}} :{}多重度2→ 順序数1 {{}}} :{}多重度3→ 順序数2 {{{{}}}}:{}多重度4→ 順序数3 ・ ・ かように、ツェルメロ定義の順序数の各元のカッコ{}の多重度から 順序数への対応がつく この順序数による整列を、ツェルメロの定義の順序数の順序Rの定義としてもいい■ (参考) https://ja.wikipedia.org/wiki/%E9%9B%86%E5%90%88 集合 記法 集合の記法には、おおまかに2通りの方法がある。論理的な概念として「内包と外延」というものがある その要素をすべて列挙するという方法と、その集合に含まれるのであれば必ず満たされ、含まれないのであれば必ず満たされない条件を明示するという方法である 「外延」に相当する、すべて列挙する方法では、例えば、1, 3, 5, 7, 9 からなる集合は {1,3,5,7,9} と表記する 「内包」に相当する、属するために満たすべき条件を明示する方法では、例えば、10 未満の正の奇数全体の集合を { x | x は 10 未満の正の奇数 } と表記する。一般に、条件 P(x) があったとき、それをみたす対象だけを全て集めた集合を {x | P(x)} と表記する。ここでは x という変数を用いているが、{ y | P(y)} と書いても { a | P(a)} と書いても構わない。日本語では内包表記などとも言う [] - [ここ壊れてます]
|

|