(参考) ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86 正則性公理(せいそくせいこうり、英: axiom of regularity)は、別名「基礎の公理」(きそのこうり、英: axiom of foundation) とも呼ばれ、ZF公理系を構成する公理の一つで、1925年にジョン・フォン・ノイマンによって導入された。選択公理と同様、様々な同値な命題が存在する。
定義 空でない集合は必ず自分自身と交わらない要素を持つ。 ∀A(A≠Φ⟹∃x∈A,∀t∈A(tnot∈x)) 以下の3つの主張はいずれもZF公理系の他の公理の元で同値であり、どれを正則性公理として採用しても差し支えない[1]。 ・x ≠ Φ に対して、∃y∈x; x ∩ y = Φ ・∀xについて、∈ が x 上整礎関係 ・V = WF ここで、V は集合論の宇宙を指し、WF は整礎的集合全体のクラス(フォン・ノイマン宇宙)を指す。
en.wikipedia.org/wiki/Axiom_of_regularity Axiom of regularity (goofle訳) 数学において、正則性公理(基礎公理とも呼ばれる)は、ツェルメロ・フランケル集合論の公理であり、空でないすべての 集合 AにはAと互いに素な要素が含まれることを述べています。第一階述語論理では、この公理は次のようになります。 略す 正則性公理は、対合公理と合わせて、どの集合もそれ自身の要素ではないこと、また、すべてのiに対してa i+1がa iの要素であるような無限列( a n )は存在しないことを意味します。従属選択公理(選択公理の弱められた形式) を使用すると、この結果は逆転します。つまり、そのような無限列が存在しない場合は、正則性公理が真になります。したがって、この文脈では、正則性公理は、下向きの無限メンバーシップ チェーンは存在しないという文と同等です。