https://en.wikipedia.org/wiki/Domain_(ring_theory) Domain (ring theory) In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0.[1] (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain.[1][2] Mathematical literature contains multiple variants of the definition of "domain".[3]
https://ja.wikipedia.org/wiki/%E9%9D%9E%E5%8F%AF%E6%8F%9B%E6%95%B4%E5%9F%9F 非可換整域 環論と呼ばれる抽象代数学の一分野における(非可換[注釈 1])整域あるいは域(いき、英: domain)とは、右または左零因子を持たない(つまり ab = 0 ならば a = 0 または b = 0 が成り立つ[2]、零積律(英語版)を満たすとも言われる)環のことを言う。しばしば自明でない(一つよりも多くの元を持つ)ことを仮定する[3]が、域が乗法単位元を持つならば、この仮定は 1 ≠ 0 と同値[4]であり、この場合の域は「左または右零因子を持たない非自明な環」のことになる。1(≠ 0) を持つ可換域は(可換)整域と呼ばれる[5][注釈 1]。