[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/14 14:35 / Filesize : 610 KB / Number-of Response : 1086
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学・数学隣接分野(含むガロア理論)13



709 名前:132人目の素数さん [2023/07/23(日) 16:00:15.51 ID:equJvKOY.net]
>>645
>どこがどうトンデモ説なのか詳しくお願いします

お答えします
<高校生でも分かる「箱入り無数目」不成立>
1)反例を構成します
 箱に0〜p-1までの数を入れるとします({0,1・・p-1}p進数類似。pは1以上の自然数)
 確率計算のために、数え上げ測度を使います(詳しくは下記)
 列の長さnの数列 sn = (s1,s2,s3 ,・・,sn)を考える(簡単のためn>5とする)
 決定番号は、https://rio2016.5ch.net/test/read.cgi/math/1674744315/30 による
 ある出題された数列に対して、その数列のしっぽの同値類で
 lemma 1. 数え上げで、決定番号d=1 は、1通り(略証:出題と同一数列のみだから)
 lemma 2. 数え上げで、決定番号d=2 は、p-1通り(略証:d=2なので、先頭のみ異なる数でp-1通り)
 lemma 3. 数え上げで、決定番号d=3 は、p^2-p通り(略証:d=3なので、先頭の2箱のみ異なる数でd=3未満の場合の和を引き算する)
 lemma 4. 数え上げで、決定番号d=k(4<=k<n) は、p^(k-1)-p^(k-2)通り(略証:d=kなので、先頭のk-1までの箱のみ異なる数でd=k未満の場合の和を引き算する)
 注)lemma 1〜4は、列の長さnに依存しないことを注意しておく
2)列の長さnの数列での確率計算をしておこう
 lemma 5. 決定番号d=k(4<=k<n) の確率は、{p^(k-1)-p^(k-2)}/p^(n-1)(略証:決定番号n以下(全体)の場合の数はp^(n-1)通りで、これをlemma 4に適用する)
3)列の長さn→∞の数列での確率計算
 lemma 6. 決定番号d=k(4<=k) のn→∞の確率は、{p^(k-1)-p^(k-2)}/p^∞ つまり0(略証:lemma 5で、n→∞とすれば良い。なお、lemma 1〜4は、列の長さnに依存しない結果だったことを思出そう)

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<610KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef