[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 12:40 / Filesize : 750 KB / Number-of Response : 1098
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

スレタイ 箱入り無数目を語る部屋3



800 名前:132人目の素数さん mailto:sage [[ここ壊れてます] .net]
ちなみに、スレ主は K[[x]] での極限を考えるのが好きらしいので、そのようなケースを考えてみよう。
まず、s,t ∈ K[[x]] が s〜t を満たさない場合を考察する。m≧0 に対して

t^{m} := Σ[k=0〜m−1] t_k x^k+(s_m+1)x^m+Σ[k=m+1〜∞] s_k x^k

と置けば、これは形式的ベキ級数であり、s 〜 t^{m} が成り立ち、(s, t^{m})に関するしっぽは「 m しっぽ 」である。
さて、t^{m} について、完備化されたK[[x]]の構造のもとで m→∞ の極限を考えると、
lim[m→∞] t^{m} = t が成り立つことが確認できる。一方で、

(1) (s, t^{m})に関するしっぽは「 m しっぽ 」

なのだった。この(1)で m→∞ とすれば、t^{m} → t に注意して、

・ (s, t)に関するしっぽは「 +∞ しっぽ 」である

が成り立つかのように見える。しかし、今回は「 s〜t を満たさない」という仮定のもとで考えていたので、
(s,t)に対しては、「しっぽ」が定義できる文脈から外れている。これはどういうことかと言うと、単純に

「(1)の文章は m→∞ の極限と交換可能ではない」

ということ。ここがスレ主の間違いポイント。勝手に交換可能だと勘違いしているということ。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<750KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef