- 601 名前:132人目の素数さん mailto:sage [2022/10/02(日) 22:18:20.04 ID:z7FJyPZM.net]
- なお、>>493-494の繰り返しになるが、R[x]には標準的なランダム性が存在しないので、
R[x]からランダムにf(x)を選びたいなら、(R[x], F, P) が確率空間になるような 任意のσ集合体 F と、任意の確率測度 P を、任意に設定してから議論することになる。 では、そのような確率空間 (R[x], F, P) を任意に取る。 この確率空間に基づいて、R[x] から多項式をランダムに選ぶことにする。すると、 { f(x)∈R[x]|deg(f(x))<+∞ } = R[x] なので、両辺の確率が定義できて、しかも P({f(x)∈R[x]|deg(f(x))<+∞ }) = 1 となる。これはつまり、 ・ 多項式 f(x) をランダムに選ぶと、確率1 で f(x) の次数は有限値である ということ。当たり前だよなw それなのに、ただ1人、スレ主だけが「基本は無限大である」と勘違いしている。バカだね。
|

|