[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 12:40 / Filesize : 750 KB / Number-of Response : 1098
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

スレタイ 箱入り無数目を語る部屋3



496 名前:ることはできないことを意味する(後述)

3)(かなりの部分>>361より再録)
・ある人が問題の数列を作った
 調べると、箱の数は(a0,a1,・・an・・)で、調べると
 ある超越関数τ(x)の原点0での級数展開の係数と一致した
 即ち τ(x)=a0+a1x+・・anx^n・・ と書ける
・形式的べき級数>>168のしっぽの同値類分類で、
 τ(x)と同じ同値類に属する関数をτ’(x)とする
 差を作ると τ(x)-τ’(x)=f(x) と書ける
 τ’(x)=τ(x)-f(x) となる
・しっぽの部分の各項が一致しているからf(x)は多項式だ
 この多項式をn次式とする。このとき、決定番号はn+1となる (これは、作為(詳細は>>361をご参照))
・ところで、同値類はこのような多項式を全て集めたものだから、多項式環>>189を成す
 多項式環を線形空間と考えると、無限次元になる>>189
・さて、出題が、τ’’(x)=τ(x)+g(x)だったとする
 g(x)は、多項式環 無限次元線形空間の元だから、いくらでも大きく取れる
 代表元をτ’(x)=τ(x)+f(x) とする
 τ’’(x)-τ’(x)=g(x)-f(x) となる。この式の次数+1が決定番号だ
 上記2)項で示したように、g(x)-f(x) の次数は 出題のg(x)の次数以下に下げることは、基本的にはできない
・だから、決定番号d1,・・d100を全て有限に選ぶことは無作為にはできない
 (∵ g(x)の次数は、いくらでも大きく取ることができ、無限次元線形空間の点なのだから、基本は無限大)
 次数を下げることは、作為があれば可能だが、それはもう確率論ではない!
・ここらが、時枝記事のトリックですね

以上
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<750KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef