- 303 名前:132人目の素数さん mailto:sage [2022/09/18(日) 11:49:54.20 ID:ldv25uGN.net]
- >>284
既に説明されてるでしょ。 スレ主は「時枝戦術の勝率はゼロだ」とほざいているが、実際の勝率がどうなっているのかは、 出題者が出題する実数列 (x1,x2,x3,…) のそれぞれに対して、今までと同様にして反復試行を行い、 時枝戦術によって統計を取ればよい。たとえば、出題者が (√2, √2, √2, …) を出題するのなら、 ・ 毎回必ず (√2, √2, √2, …) を出題し、そのたびにスレ主は時枝戦術を使って統計を取る という反復試行によってテストすればよい。既に説明したとおり、この場合は 「少なくとも 99/100 以上の確率で何らかの箱の中身を当てられる」ことになる。 趣向を変えて、出題者が (√3, √4, √5, √6, …) を出題するのなら、 ・ 毎回必ず (√3, √4, √5, √6, …) を出題し、そのたびにスレ主は時枝戦術を使って統計を取る という反復試行によってテストすればよい。すると、全く同じく 「少なくとも 99/100 以上の確率で何らかの箱の中身を当てられる」ことになる。 このように、出題者がどんな実数列 (x1,x2,x3,…) を出題しても、 ・ 毎回必ず (x1,x2,x3,…) を出題し、そのたびにスレ主は時枝戦術を使って統計を取る という反復試行によってテストすれば、全く同様に「少なくとも 99/100 以上の確率で箱の中身を当てられる」ことになる。 従って、時枝戦術を使い続けたスレ主は、「ほらね、時枝戦術では勝てないじゃん」とは宣言できず、 逆に「少なくとも 99/100 以上の確率で何らかの箱の中身を当てられる」ことを立証してしまう。
|

|