- 200 名前:132人目の素数さん [2022/09/09(金) 07:41:38.38 ID:0RlEkGtl.net]
- >>189 補足
下記の説明が丁寧で、参考になるだろう https://math-fun.net/20210125/9720/ 趣味の大学数学 木村(@kimu3_slime) 関数空間が無限次元とは? 多項式関数を例に 2021年1月25日 今回は、関数空間が無限次元であるとはどういうことか、多項式関数を例に紹介したいと思います。 目次 ・N次多項式関数のなす空間 ・無限次元の線形空間 ・こちらもおすすめ N次多項式関数のなす空間 以前、連続関数のなす集合C(R)は、線形空間となることを紹介しました(関数空間)。 この空間は、実は無限次元となります。それを理解するために、連続関数のなす集合の部分集合、特に多項式関数からなる集合を考えましょう。 無限次元の線形空間 今まではある次数NNまでの多項式を考えましたが、任意の次数の多項式をすべて集めた集合を考えることもできます。 P(R)は、さきほどまでの議論と同様にして、線形空間です。しかしながら、無限次元であることを示すことができます。 線形空間Vが無限次元(infinite dimensional)であるとは、有限次元ではないこと、と定義します。 P(R)を有限次元であると仮定しましょう。 以下略(原文ご参照) 以上、無限次元の関数空間の例、多項式関数のなす空間を紹介しました。 線形代数学においては、線形空間を有限次元のものに限って議論することがほとんどです。しかし、連続関数のなす空間C)C(R)や可積分関数のなす空間L^p(R)といった関数空間は、一般には無限次元です。 フーリエ級数展開や偏微分方程式の理論では、関数空間を調べる必要があり、そのような分野は関数解析と呼ばれています。
|

|