[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 19:38 / Filesize : 315 KB / Number-of Response : 1045
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大学学部レベル質問スレ 19単位目



1 名前:132人目の素数さん mailto:sage [2022/08/04(木) 23:29:28.02 ID:0Ho6Owof.net]
大学で習う数学に関する質問を扱うスレ

・質問する前に教科書や参考書を読むなりググるなりして
・ただの計算は
wolframalpha.com
・数式の表記法は
mathmathmath.dote ra.net
・質問のマルチポストは非推奨
・煽り、荒らしはスルー

※前スレ
大学学部レベル質問スレ 18単位目
https://rio2016.5ch.net/test/read.cgi/math/1651147986/

976 名前:132人目の素数さん [2022/11/20(日) 14:51:49.19 ID:YpHm4yCq.net]
g は a で微分可能、 f は g(a) で微分可能とする。
このとき、 f(g(x)) は a で微分可能で、微分係数は f'(g(a)) * g'(a) であることを証明せよ。

(1) ε を任意の正の実数とするとき、 0 < |h| < ε かつ g(a + h) - g(a) = 0 となるような h が存在する場合。

このとき、 f(g(x)) は a で微分可能で、微分係数は 0 = g'(a) = f'(g(a)) * g'(a) であるから、成り立つ。

(2) 0 < |h| < ε ⇒ g(a + h) - g(a) ≠ 0 を成り立たせるような正の実数 ε が存在する場合。

[f(g(a+h))-f(g(a))]/h = [f(g(a+h))-f(g(a))]/[g(a+h)-g(a)] * [g(a+h)-g(a)]/h → f'(g(a)) * g'(a) (h → 0)

>>931
のトリックを使わずに証明できれば満足なのですが。

977 名前:132人目の素数さん [2022/11/20(日) 16:01:33.26 ID:3xfPLt82.net]
>>937
928では落第?

978 名前:132人目の素数さん [2022/11/20(日) 16:07:53.73 ID:YpHm4yCq.net]
>>938
あっていると思いますが、合成関数の微分の公式は使わないで証明してほしかったです。

979 名前:132人目の素数さん [2022/11/20(日) 16:13:26.62 ID:3xfPLt82.net]
合成関数の微分は微積分で最も重要な公式と
溝畑先生の教科書に書いてある

980 名前:132人目の素数さん [2022/11/20(日) 17:20:15.94 ID:QBAd8Nia.net]
>>938
微分可能性を示すのだから
合成関数の微分法はその結論だよ

981 名前:132人目の素数さん mailto:sage [2022/11/20(日) 17:24:51.40 ID:4dXUOTOD.net]
p:E→Bをfibrationとして底空間BがAへと変位レトラクトである時
全空間でもEがp^-1(A)へと変位レトラクトである事はどのように証明すればよいのでしょうか
(変位レトラクトの定義は強でない方、つまりホモトピーはA×I上で固定されていなくてよい方の定義を考えています)

単純にE×I→B×I→B(左のmapはは射影、右は変位レトラクトを与えるホモトピー)にhomotopy lifting propertyを使おうとしても
t=1でp^-1(A)上で恒等写像になる事が示せずに困っています

982 名前:132人目の素数さん [2022/11/20(日) 17:28:47.44 ID:gdRLw20T.net]
>>941
だから落第だね

983 名前:132人目の素数さん [2022/11/20(日) 17:32:24.11 ID:Sfr1QN7O.net]
>>942
下記の pdf :
ttps://www.researchgate.net/publication/352165776_homotopilun_yanjiunoto
で、定理 4.10.1 を参照してください。
DR pair というのが、変位レトラクトの意味です。

元ネタは、A.Strom の論文、Note on Cofibrations II です。

984 名前:132人目の素数さん [2022/11/20(日) 17:55:00.68 ID:Sfr1QN7O.net]
>>942
訂正. 上記 pdf では、(B, A) は closed cofibration と仮定しています。
(B, A) が closed cofibration でなくて、なおかつ A が B の変位レトラクトの場合については,
私にはまだわかりません.



985 名前:132人目の素数さん [2022/11/20(日) 18:39:27.00 ID:QBAd8Nia.net]
>>937
トリックていうか
(f(g(x))-f(g(a)))/(x-a)=(f(g(x))-f(g(a)))/(g(x)-g(a))・(g(x)-g(a))/(x-a)
の素朴さを保ちつつ
lim(f(g(x))-f(g(a)))/(g(x)-g(a))
の部分を考えるには
h(t)=(f(t)-f(g(a)))/(t-g(a)) (t<>g(a))
と置いて
limh(g(x))
が必要でそれにはh(t)をt=g(a)の場合にも連続に拡張すればよいのだから自然では?

986 名前:132人目の素数さん mailto:sage [2022/11/20(日) 18:41:20.87 ID:4dXUOTOD.net]
>>944
ありがとうございます
cofibrationの用語にあまり馴染みがなくてちゃんとは読めてませんが
このpdfでDR-pairと呼んでいるものは自分が言っているところの強変位レトラクトの事のように見えます
自分が今考えているのは(弱)変位レトラクトの方でこれはwikiの
ja.wikipedia.org/w/index.php?curid=3607000
にあるような定義を採用しています(ホモトピーがA×I上でidentityになる事を要請しない)

https://mathoverflow.net/questions/178509/in-a-fibration-can-a-deformation-retraction-of-the-base-be-lifted-to-the-total
のサイトに関連した事が書いてあるのですが
強変位レトラクトについてはおっしゃる通りclosed cofibrationの仮定が必要になるようですが
強でない変位レトラクトの場合はその仮定なしで「明らか」だとHatcherは書いています
この「明らか」と言っている部分がよくわからないのでその部分を教えてほしいです

987 名前:132人目の素数さん [2022/11/20(日) 18:50:35.29 ID:YpHm4yCq.net]
>>946
ありがとうございます。何を自然と考えるかですね。

シュプリンガーのセールで以下の本が安いので、買おうかどうか考えています。

Mathematical Logic (Graduate Texts in Mathematics, 291) 3rd ed. 2021 Edition
by Heinz-Dieter Ebbinghaus (Author), Jörg Flum (Author), Wolfgang Thomas (Author)

これっていい本ですか?

988 名前:132人目の素数さん [2022/11/20(日) 18:56:48.69 ID:Sfr1QN7O.net]
>>947
リンクありがとうございます。Allen Hatcher 先生の明らかだ、という主張は、私にもわかりません。
I × E から E への写像 G で, G(1, x) ∈ E|A なるものはすぐに見つかりますが、
G(1, a) = a が任意の a ∈ A に対して成り立つかどうかが問題ですね。

989 名前:132人目の素数さん [2022/11/20(日) 18:57:34.70 ID:Sfr1QN7O.net]
訂正
任意の a ∈ E|A に対して成り立つかどうか

990 名前:132人目の素数さん [2022/11/20(日) 19:02:23.66 ID:QBAd8Nia.net]
k(x)=(f(g(x))-f(g(a)))/(g(x)-g(a)) (g(x)<>g(a)), f'(g(a)) (g(x)=g(a))
を考えるのは技巧的
x=aの周りで常にg(x)=g(a)である場合
k(x)=(f(g(x))-f(g(a)))/(g(x)-g(a)) (g(x)<>g(a))
にはlimk(x)が存在しないため
定義域の境界における値を延長することになるから

991 名前:132人目の素数さん [2022/11/20(日) 19:11:11.38 ID:QBAd8Nia.net]
>>949
Aから段々延ばしてBに広げられるのだから
HEPによってAの各点のファイバーをグニューッとズラしていく感じ?

992 名前:132人目の素数さん [2022/11/20(日) 19:30:31.59 ID:Sfr1QN7O.net]
>>952
いいえ、今話題になっているケースは、(B, A) が cofibration でない場合です。

使える条件は、
[1] p : E → B は fibration
[2] A は B の弱変位レトラクト
のみです。

993 名前:132人目の素数さん mailto:sage [2022/11/20(日) 19:31:03.92 ID:4dXUOTOD.net]
>>949
やはりそれほどすぐには言えないですよね
もう少し考えてみます

994 名前:132人目の素数さん [2022/11/20(日) 19:42:01.24 ID:QBAd8Nia.net]
>>953
スマン逆
HLPで



995 名前:132人目の素数さん [2022/11/20(日) 19:53:27.13 ID:Sfr1QN7O.net]
>>955
H : I × B → B で任意の x ∈ B と a ∈ A に対して
H(0, x) = x, H(1, x) ∈ A, かつ H(1, a) = a
なるものに対して, HLP によって, G_0 = id_E なる
H の lifting G : I × E → E の存在はすぐ言えるんです。
この G が 任意の x' ∈ E|A に対して G(1, x') = x' という
条件を満たすかどうかがわからない。

A のファイバーの各点をずらしていく、という感じだと、
任意の x' ∈ E|A に対して G(1, x') = x' という条件から出発して、
任意の x ∈ E に対して G(0, x) = x を満たす homotopy
G: I × E → E を構成しないといけないと思います。

996 名前:132人目の素数さん [2022/11/21(月) 00:26:29.47 ID:c+vN0yiY.net]
C^n の、ざりすき位相での非空開集合は、ユークリッド位相で稠密ですか。

997 名前:132人目の素数さん mailto:sage [2022/11/21(月) 00:49:22.81 ID:ZifoTbGb.net]
はい

998 名前:132人目の素数さん [2022/11/21(月) 05:22:31.47 ID:XuWZLDN0.net]
Cの無限部分集合は、ざりすき位相で稠密ですか。

999 名前:132人目の素数さん mailto:sage [2022/11/21(月) 05:47:49.57 ID:aGdDNWLt.net]
はい

1000 名前:132人目の素数さん [2022/11/21(月) 07:04:37.38 ID:XuWZLDN0.net]
CからC^2への正則な埋め込みは
代数的な埋め込みと解析的に共役ですか。

1001 名前:132人目の素数さん [2022/11/21(月) 08:42:23.11 ID:A1jMls5d.net]
野村隆昭著『複素関数論講義』



1002 名前:べき級数の合成についてですが、2重級数についての定理を使う必要がありますが、
それについては触れずに、直感的に展開してしまっています。
[]
[ここ壊れてます]

1003 名前:132人目の素数さん mailto:sage [2022/11/21(月) 10:56:23.04 ID:XQg9SDPb.net]
>>962
その本は駄本だから読むのを止めることを勧める。ここで指摘して出版社がそれを見て駄本を絶版にすること(正義の味方笑)が目的なのか

1004 名前:132人目の素数さん mailto:sage [2022/11/21(月) 10:58:35.37 ID:XQg9SDPb.net]
>>962
それにしてもお前はその著者の本に対して異常なほど長期にわたって粘着しているよな



1005 名前:132人目の素数さん [2022/11/21(月) 11:20:02.15 ID:6t/nf617.net]
CからC^2への代数的な埋め込みは
線形な埋め込みと代数的に共役ですか。

1006 名前:132人目の素数さん [2022/11/21(月) 16:43:23.91 ID:A1jMls5d.net]
f(z) = a_1*z + a_2*z^2 + …
g(w) = b_0 + b_1*w + b_2*w^2 + …

とする。著者は、 g(f(z)) が z = 0 を中心とするべき級数に展開されることを示しています。

その後、次の文があらわれます:

「命題4.20より、 g(f(z)) は z = 0 の近傍で正則であり、したがって、解析的である。」

命題4.20というのは、合成関数の微分についての定理です。

この文に対して、以下の注釈が書いてあります。

「べき級数論だけで証明できるが、本書では後述の定理8.21に拠ることとした。」

これがよく分かりません。

g(f(z)) は z = 0 を中心とするべき級数なので、 z = 0 を中心とする収束円の内部で
正則です。別に、合成関数の微分についての定理を持ち出さなくてもいいはずです。
さらに、 g(f(z)) は z = 0 の近傍で解析的であることも、それ以前に証明されている
べき級数が収束円の内部で解析的であるという定理4.34から明らかです。
後述の定理8.21に拠らなくても、既に証明されていることです。

これは一体どう考えたらいいでしょうか?

1007 名前:132人目の素数さん [2022/11/21(月) 16:47:35.15 ID:A1jMls5d.net]
野村隆昭著『複素関数論講義』

f(z) = a_1*z + a_2*z^2 + …
g(w) = b_0 + b_1*w + b_2*w^2 + …

とする。著者は、 g(f(z)) が z = 0 を中心とするべき級数に展開されることを示しています。

その後、次の文があらわれます:

「命題4.20より、 g(f(z)) は z = 0 の近傍で正則であり、したがって、解析的である。」

命題4.20というのは、合成関数の微分についての定理です。

この文に対して、以下の注釈が書いてあります。(g(f(z))が解析的であることの証明についての注釈です。)

「べき級数論だけで証明できるが、本書では後述の定理8.21に拠ることとした。」

これがよく分かりません。

g(f(z)) は z = 0 を中心とするべき級数なので、 z = 0 を中心とする収束円の内部で
正則です。別に、合成関数の微分についての定理を持ち出さなくてもいいはずです。
さらに、 g(f(z)) は z = 0 の近傍で解析的であることも、それ以前に証明されている
べき級数が収束円の内部で解析的であるという定理4.34から明らかです。
後述の定理8.21に拠らなくても、既に証明されていることです。

これは一体どう考えたらいいでしょうか?

1008 名前:132人目の素数さん mailto:sage [2022/11/21(月) 17:02:35.03 ID:XQg9SDPb.net]
その本は全く駄目な本だから攻撃ネタは山ほどあるが、著者はもう死んでいるのでそれ以上やめてくれ。著者の無能が暴かれて可哀想すぎる。

1009 名前:132人目の素数さん [2022/11/21(月) 17:04:44.12 ID:A1jMls5d.net]
>>968

いい本であると思いますが、細かいところで、疑問点が出てくるところがあります。

1010 名前:132人目の素数さん mailto:sage [2022/11/21(月) 17:10:07.52 ID:XQg9SDPb.net]
褒め殺しまでして攻撃の手を緩めないということか。恐ろしい奴ににらまれたな。無能な著者の自業自得と諦めるしかないのか。死んでまでこんな仕打ちを受けるとは。

1011 名前:132人目の素数さん mailto:sage [2022/11/21(月) 17:17:09.26 ID:XQg9SDPb.net]
絶版にさせることが目的のようだな。あまりに粘着質な読者によって無能な著者がその駄本を葬られる。しつこすぎる攻撃が恐ろしい。

1012 名前:132人目の素数さん [2022/11/21(月) 17:19:13.48 ID:A1jMls5d.net]
>>971
『複素関数論講義』を読んだことはあるのでしょうか?

1013 名前:132人目の素数さん mailto:sage [2022/11/21(月) 17:21:07.96 ID:XQg9SDPb.net]
しかもこいつの指摘の「7~8割」は誤りまたはどうでもよい指摘なのだ。こんな奴のしつこすぎる攻撃で鞭打たれるとは無能な著者とはいえ可哀想すぎる。

俺は今すぐ攻撃をやめることを希望する。

1014 名前:132人目の素数さん mailto:sage [2022/11/21(月) 17:21:57.53 ID:XQg9SDPb.net]
>>972
俺はその無能な著者の関係者なんだよ。



1015 名前:132人目の素数さん mailto:sage [2022/11/21(月) 17:26:18.19 ID:XQg9SDPb.net]
>>972
疑問形式や伝聞形式でも内容により名誉毀損になるので、お前の「誤った指摘」に関しては貯めておいて開示請求の資料にさせてもらうよ。あまりにつらすぎる。

1016 名前:132人目の素数さん [2022/11/21(月) 17:31:00.79 ID:A1jMls5d.net]
f(z) = a_1*z + a_2*z^2 + …
g(w) = b_0 + b_1*w + b_2*w^2 + …

とする。

|z| が十分小さいときの f(z) は、 g(w) の収束円の内部に入ので、合成関数 g(f(z))
を考えることができます。

g(f(z)) は z = 0 を中心とするべき級数 c_n*z^n であらわされます。

このとき、 g(f(z)) の定義域と c_n*z^n の収束域は一致するのでしょうか?

1017 名前:132人目の素数さん mailto:sage [2022/11/21(月) 17:55:46.35 ID:cp7ihkAX.net]
>>975
君の方がひどいこと書いてね?

1018 名前:132人目の素数さん [2022/11/21(月) 20:14:44.88 ID:XuWZLDN0.net]
>>976
関数の定義域として原点中心の開

1019 名前:~板のみを考えるのであれば []
[ここ壊れてます]

1020 名前:132人目の素数さん [2022/11/21(月) 20:30:38.85 ID:NVftFyVp.net]
>>974
誤りではなくどうでもよくない一番ダメな所ってどこですか?

1021 名前:132人目の素数さん [2022/11/21(月) 20:42:45.79 ID:XuWZLDN0.net]
>>979
まあやめとけ

1022 名前:132人目の素数さん [2022/11/21(月) 20:42:45.94 ID:XuWZLDN0.net]
>>979
まあやめとけ

1023 名前:132人目の素数さん mailto:sage [2022/11/22(火) 12:15:51.02 ID:aDS36Zer.net]
次スレ
大学学部レベル質問スレ 20単位目
https://rio2016.5ch.net/test/read.cgi/math/1669086920/

1024 名前:132人目の素数さん [2022/11/22(火) 12:32:37.25 ID:7dgkSszV.net]
平行四辺形と平行六面体のn次元への一般化ってなんていうの?

2次元→平行四辺形
3次元→平行六面体
n次元→?

ウィキペディアによると「平行多面体」は違う意味で使われてるらしい(ゾーン多面体がなんたらかんたら)



1025 名前:132人目の素数さん mailto:sage [2022/11/22(火) 12:51:44.28 ID:73WiJEGg.net]
n次元ユークリッド空間の図形で名前ついてる方が少ないかついててもすごいマイナーなやつしかないやろ
結局“本稿では××の図形を××と呼ぶ”みたいに一々全部断り書きつけるしかない
そんなマイナーな単語使って通用するのは便所の落書きくらい

1026 名前:132人目の素数さん [2022/11/22(火) 14:27:39.06 ID:mWFOCqFM.net]
>>984
そうなんか、サンクス

1027 名前:132人目の素数さん [2022/11/22(火) 16:19:49.73 ID:SS5lOObG.net]
線形回帰分析で
回帰直線への距離で最小二乗法して算出した回帰直線の決定係数の算出の仕方を教えてください。
主成分回帰やダミング回帰で調べてもなかなか辿り着きません 検索ワードだけでも教えていただければ幸いです。

1028 名前:132人目の素数さん mailto:sage [2022/11/22(火) 22:32:16.64 ID:ZYnWiMO4.net]
>>983
行列式で一般面積一般体積出せる超平行単体のシークエンスの母関数ならぬ母空間でも考えとるんか?。

1029 名前:132人目の素数さん [2022/11/22(火) 23:33:47.40 ID:DAMbwnXZ.net]
>>986
y=ax+bが(xi,yi)とのズレがaxi+b-yiなので2乗して(axi+b-yi)^2でf(a,b)=Σ(axi+b-yi)^2が最小になるようにa,bを決めればいいんでしょ?

1030 名前:132人目の素数さん [2022/11/22(火) 23:39:58.00 ID:lKi1s1Vx.net]
>>988
それ回帰直線の出し方じゃないです?

かと言って決定係数わからないですけど

1031 名前:132人目の素数さん mailto:sage [2022/11/22(火) 23:53:41.80 ID:qlFg3LTl.net]
どうゆうこっちゃ?
つまりΣ| axᵢ - yᵢ +b |²/(a²+b²)が最小になるa,b?

1032 名前:132人目の素数さん mailto:sage [2022/11/23(水) 00:54:26.00 ID:qwgFP4ly.net]
>>990
の意味でいいなら
S = Σ | xᵢ cosθ + yᵢ sinθ + c |²
= nc² + 2c Σ (xᵢ cosθ + yᵢ sinθ)
    + Σ ( xᵢ cosθ + yᵢ sinθ )²

はc = -1/nΣ (xᵢ cosθ + yᵢ sinθ)のとき最小値
- ((Σ (xᵢ cosθ + yᵢ sinθ))²/n
+ Σ ( xᵢ cosθ + yᵢ sinθ )²
= ( -(Σxᵢ)²/n + Σxᵢ² ) cos²θ
+( -( Σxᵢ )( Σyᵢ )/n + Σxᵢyᵢ) )2sinθcosθ
 + ( -(Σyᵢ)²/n + Σyᵢ² ) sin²θ
なのでこれを最小にするθを求めればいいのではなかろか

1033 名前:132人目の素数さん [2022/11/23(水) 00:56:18.40 ID:62ydA4JG.net]
>>989


1034 名前:132人目の素数さん [2022/11/23(水) 00:58:07.58 ID:62ydA4JG.net]
>>990
距離^2なら分母は1+a^2では?



1035 名前:132人目の素数さん mailto:sage [2022/11/23(水) 01:05:46.27 ID:qwgFP4ly.net]
まぁでも>>990のような意味にとるのはそもそも統計学的におかしいからな
いわゆる(xᵢ,yᵢ)という散布図の計量なんて特に意味はないからそこで測った距離の二乗和が最小とかそもそも意味ない感はある
例えばいわゆる“相関係数”とかが理論的に望ましいのは2つの

1036 名前:統計量を定数倍とか定数出すとかの変換で不変で、言ってみれば2つの統計量を“測る単位”に普遍に値が決まるのが魅力的で横軸の統計量の“単位”を変えても答え同じというのがいい
しかし“その直線までの距離の二乗の和が最小となる直線”とかその手の変換で不変ではないからな
しかしΣ|axᵢ+b -yᵢ|²が最小となるa,bはある意味その手のスケール変換で不変に保たれるからこっちの方が優れてるんだけどな
[]
[ここ壊れてます]

1037 名前:132人目の素数さん mailto:sage [2022/11/23(水) 01:07:49.97 ID:qwgFP4ly.net]
>>993
ax+by+cと(p,q)の距離は
| ap + bq + c |²/√(a²+b²)
法線ベクトルの長さ1にしてるので分母を考えなくていい

1038 名前:132人目の素数さん mailto:sage [2022/11/23(水) 05:35:35.47 ID:re4Vphli.net]
決定係数がわからないんならそれで検索すればいいだろ。

>>995
それのbが-1だろ。

1039 名前:132人目の素数さん mailto:sage [2022/11/23(水) 09:02:21.02 ID:24O4/fxk.net]
>>996
違うって
求めたいのは直線やろ?
その直線の方程式をy = ax + bとおくか、x cosθ+ysinθ+c =0とおくかは自由においていいやろ?
必要なら後でy = ax+bに直せばいいんやから

1040 名前:132人目の素数さん mailto:sage [2022/11/23(水) 09:22:15.49 ID:24O4/fxk.net]
つまり普通はa,bを変数としてΣ(axᵢ-yᵢ)²を最小にするa,bを求めるけど(wikiでは“残差の平方和”と表現している)けど、そうじゃなくてΣ(axᵢ-yᵢ)²/(a²+1)を最小にするa,bを求めたいと言ってるんじゃないの、で前者ですらどうやればいいかわからないと言ってるのが>>989じゃないの?

1041 名前:132人目の素数さん mailto:sage [2022/11/23(水) 09:29:30.77 ID:re4Vphli.net]
>>997

>つまりΣ| axᵢ - yᵢ +b |²/(a²+b²)が最小になるa,b?

>| ap + bq + c |²/√(a²+b²)

上は下のa,b,cにa,-1,bを入れたんだから分母は√(a²+(-1)²)。
あとまず決定係数で検索しろ。

1042 名前:132人目の素数さん mailto:sage [2022/11/23(水) 09:36:53.81 ID:24O4/fxk.net]
ダメだ
コイツ理解できる知能ないわ

1043 名前:1001 [Over 1000 Thread.net]
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 110日 10時間 7分 26秒

1044 名前:過去ログ ★ [[過去ログ]]
■ このスレッドは過去ログ倉庫に格納されています








[ 新着レスの取得/表示 (agate) ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef