- 814 名前:132人目の素数さん [2022/11/03(木) 18:01:01.61 ID:8OwRRGSp.net]
- 高校数学の教科書に以下の記述があります:
根元事象がすべて同様に確からしいような試行において、 全事象 U に属する根元事象の個数を n(U) 事象 A に属する根元事象の個数を n(A) とするとき、 n(A)/n(U) を事象 A の確率といい、 P(A) で表す。 その後、例題の中に以下の記述があります: A, Bで作った製品が不良品である確率は、それぞれ、 0.02, 0.01 である。 この場合の同様に確からしい根元事象とは一体何でしょうか? その後、表と裏の凹凸のようすがかなりちがっているボタンを何回も投げたときに表の出た 相対度数がほぼ 0.52 になるから表の出る確率の近似値は 0.52 であるという記述があります。 この試行の同様に確からしい根元事象は一体なんでしょうか? その後、 「これまで、同様に確からしい根元事象にもとづいて確率を具体的に計算した。 しかし、実際の現象では、その事象の確率を場合の数によって計算できないことが多い。」 などという記述があらわれます。 確率を 「 根元事象がすべて同様に確からしいような試行において、 全事象 U に属する根元事象の個数を n(U) 事象 A に属する根元事象の個数を n(A) とするとき、 n(A)/n(U) を事象 A の確率といい、 P(A) で表す。 」 と定義しておきながら、事象の確率を場合の数によって計算できないことが多いなどと書いています。 それでは、確率とは何なのかという話になります。 ひどすぎますよね?
|

|