[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 19:38 / Filesize : 315 KB / Number-of Response : 1045
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大学学部レベル質問スレ 19単位目



804 名前:132人目の素数さん [2022/10/31(月) 19:03:35.25 ID:UHpvprLi.net]
(1) ∃N s.t. ∀n > Nに対してa_n<α+ε
(2) 無数の番号nに対してα-ε<a_n
(1),(2)が成り立てば、αは{a_n}の上極限であることを証明せよ。

以下の解答は間違っていませんか?

正のεを任意にとる。(1)より、∃N s.t. ∀n > Nに対してa_n<α+εが成り立つ。
n≧N+1⇒a_n<α+εが成り立つ。
∴sup{a_{N+1}, a_{N+2},…}≦α+ε
i≧N+1ならば、sup{a_i, a_{i+1},…}≦sup{a_{N+1}, a_{N+2},…}≦α+ε
iを任意にとる。もしも、sup{a_i, a_{i+1},…}≦α-εが成り立てば、(2)が成り立たない。
∴α-ε<sup{a_i, a_{i+1},…}
以上より、i≧N+1ならば、α-ε<sup{a_i, a_{i+1},…}≦α+ε
∴lim sup{a_i, a_{i+1},…} = α






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef