- 591 名前:132人目の素数さん [2022/10/15(土) 14:11:44.94 ID:OPx8yoo4.net]
- 自分は(2)を
2rf(x)=∫[x-r,x+r] f(t)dt にしてから(r>0でなくても成立)xとrで偏微分して 2rf’(x)=f(x+r)-f(x-r) 2f(x)=f(x+r)+f(x-r) から辺々足して2で割って rf’(x)+f(x)=f(x+r) でx=0代入して rf’(0)+f(0)=f(r) で1次以下というのを思いついた f(x)が積分は可能だが微分可能と仮定しない場合は 2f(x)=f(x+r)+f(x-r) だけなのでg(x)=f(x)-f(0)とすると 2g(x)=g(x+r)+g(x-r) から帰納法でn∈Zについて g(nx)=ng(x) よってx∈Qについて g(x)=g(1)x でg(x)の連続性からx∈Rで f(x)=g(1)x+f(0) かなと けど連続性も仮定しない場合に(2)の右辺が定義されるのかというのがよく分からなくて
|

|