[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 19:38 / Filesize : 315 KB / Number-of Response : 1045
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大学学部レベル質問スレ 19単位目



574 名前:EQxL.net mailto: ・ 任意の実数 x と任意の正の実数 r に対して 2r * f(x)=∫[x−r, x+r]f(t)dt が成り立っている。


x=1と置く。任意の正の実数 r に対して 2r * f(1)=∫[1−r, 1+r]f(t)dt が成り立つ。
r で微分して、任意の正の実数 r に対して 2 * f(1)=f(1+r)+f(1−r) が成り立つ。

x=0.7と置く。任意の正の実数 r に対して 2r * f(0.7)=∫[0.7−r, 0.7+r]f(t)dt が成り立つ。
r で微分して、任意の正の実数 r に対して 2 * f(0.7)=f(0.7+r)+f(0.7−r) が成り立つ。

x=√2と置く。任意の正の実数 r に対して 2r * f(√2)=∫[√2−r, √2+r]f(t)dt が成り立つ。
r で微分して、任意の正の実数 r に対して 2 * f(√2)=f(√2+r)+f(√2−r) が成り立つ。

x=2022と置く。任意の正の実数 r に対して 2r * f(2022)=∫[2022−r, 2022+r]f(t)dt が成り立つ。
r で微分して、任意の正の実数 r に対して 2 * f(2022)=f(2022+r)+f(2022−r) が成り立つ。

x=−35と置く。任意の正の実数 r に対して 2r * f(−35)=∫[−35−r, −35+r]f(t)dt が成り立つ。
r で微分して、任意の正の実数 r に対して 2 * f(−35)=f(−35+r)+f(−35−r) が成り立つ。

上記の作業で得られた等式群。
・ 任意の正の実数 r に対して 2 * f(1)=f(1+r)+f(1−r)
・ 任意の正の実数 r に対して 2 * f(0.7)=f(0.7+r)+f(0.7−r)
・ 任意の正の実数 r に対して 2 * f(√2)=f(√2+r)+f(√2−r)
・ 任意の正の実数 r に対して 2 * f(2022)=f(2022+r)+f(2022−r)
・ 任意の正の実数 r に対して 2 * f(−35)=f(−35+r)+f(−35−r)

同様にして、x がどんな実数でも
・ 任意の正の実数 r に対して 2 * f(x)=f(x+r)+f(x−r)

こういうことやってるだけ。
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef