[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 19:38 / Filesize : 315 KB / Number-of Response : 1045
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大学学部レベル質問スレ 19単位目



296 名前:132人目の素数さん mailto:sage [2022/09/07(水) 21:00:50.25 ID:Du667sV0.net]
H.フランダース, 微分形式の理論 およびその物理科学への応用 (岩波書店)
(原題: Harley Flanders, Differential Forms with Applications to the Physical Sciences )
p.22 の問題より

n次元ベクトル空間: V
添字組: H=(i₁,i₂,...,iₚ) { 1≦ i₁<i₂<...<iₚ ≦n }
p重ベクトル基底: σ^H := σ[i₁] ∧ σ[i₂] ∧ ... ∧ σ[iₚ] {基底ベクトル: σ[i]∈V}
として、
p重ベクトル: α = Σ{H} a[H] σ^H {a[H]∈R, ∃a[H]≠0}
を固定すると

部分ベクトル空間: M (⊂ V) { def: v∈M ⇔ α∧v=0 }
が定まります

以下を証明してください
問1. dim(M) ≦ p

問2. dim(M) = p が成り立つためには
α = u₁ ∧ u₂ ∧ ... ∧ uₚ {u₁,u₂,..,uₚ は適当な独立ベクトル}
の形に表せることが必要十分である
-----------------------------

問1.
a[H]から定まる C[n,p+1] × n 次行列 (Aとする) を考えてみたものの
dim(ker(A)) ≦ p を示す方法が分かりません

問2.
[必要性] 分からない
[十分性] w = u₁∧u₂∧...∧uₚ の時 M = span({u₁,u₂,...,uₚ}), よって dim(M)=p






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef