1 名前:132人目の素数さん [2021/12/24(金) 23:12:55.02 ID:niwhLyZI.net] クリスマスイブ真っ只中、お忙しい所申し訳ございませんが、皆様、力をお貸しくださいませ… https://i.imgur.com/YQoIMSp.jpg 何かありそうですか?
2 名前:132人目の素数さん [2021/12/24(金) 23:20:41.58 ID:niwhLyZI.net] メモ帳に書いてプリントアウトした
3 名前:132人目の素数さん mailto:sage [2021/12/24(金) 23:25:14.57 ID:FBXTCEku.net] 見つけたらフィールズ賞間違いなしですね
4 名前:132人目の素数さん mailto:sage [2021/12/25(土) 06:49:01.44 ID:Mb+8rzb8.net] VIPの方から来ました
5 名前:132人目の素数さん mailto:sage [2021/12/25(土) 07:06:26.22 ID:Mb+8rzb8.net] ”’;;’;';;”;;;,., ブーン・・・ ”’;;’;”;’;”’;;”;;;,., ブーン・・・ ;;”’;;’;”;’;';;;”;;”;;; ;;”;’;';;”;;’;”;’;';;;”;;”;;; rっ vymyvwymyvymyvy、 || mVvvMvyvmVvvmvyvmVvv、 |/⌒ヽ /^ヽ (^^) /^ヽ (^^) /^ヽ(^^)/^ヽ VIPから来ました (^ω^ )(ω^ )/⌒ヽ(^ω^)/⌒ヽ^ω^) ( ^ω)-っ /⌒ \ | _二二二つω^ )(\ ( ^ω^ )二⊃ /⌒ヽr ⊂二(^ω^ )二ノ /( ^ω^ ) ⊂二\\_/⌒ヽ二二( ^ω^)二⊃ ヽ | (´ ._ノ ヽ /⌒ヽつ \( ^ω^) | / ソ ) \\⊂二二二( ^ω^ )二二二⊃ ⊂_) ( ヽノ ( < \ レ’\\ ヽ / i ) ノ ノ>ノ \|\| レ (⌒) | /ノ ̄ レレ
6 名前:132人目の素数さん [2021/12/25(土) 07:53:51.00 ID:0YGYsksh.net] 3n+2 【素数 Wikipedia参照】 素数とは、自明な正の因数(1 と自分自身)以外に因数を持たない自然数であり、1 でない数のことである。つまり、正の因数の個数が 2 である自然数である 例えば、2 は、正の因数が 1, 2 のみなので素数である 素数でない 2 以上の自然数を合成数と呼ぶ 下記の3条件どれかを満たす数は全て合成数である 4以上の偶数 15以上で末尾が5の数 数字和が3の倍数となる数 (21, 27, 33, 39, 51, 57, 63, 69, 81, 87, 93, 99, …) 逆に、この3条件を、全て満たさない数でも素数とは限らない。例えば、91 は、正の因数が 1, 7, 13, 91 なので素数ではない また、2, 3 でない素数は、最も近い6の倍数との差が 1 か −1 である 上記より、2と3以外の素数は6n±1 つまり、3n+2を満たす数は、6n±1に存在する 皆が通る道だと思います。自分も通りました。素質はあると思いますので、これからも頑張ってください
7 名前:132人目の素数さん mailto:sage [2021/12/25(土) 08:59:23.60 ID:Mb+8rzb8.net] 車輪の再発見を褒める
8 名前:132人目の素数さん [2021/12/25(土) 09:53:18.17 ID:iljqzYq3.net] >>6 マジかー…頑張る…
9 名前:132人目の素数さん [2021/12/25(土) 10:10:15.98 ID:iljqzYq3.net] コラッツ予想から考えると3n+2だなーって思ったんですけども…
10 名前:132人目の素数さん [2021/12/25(土) 10:13:04.04 ID:iljqzYq3.net] だから多分小さい数字は独立した数になる!
11 名前:132人目の素数さん [2021/12/25(土) 10:23:53.33 ID:iljqzYq3.net] (コラッツ予想の枝分かれ的に)
12 名前:132人目の素数さん mailto:sage [2021/12/25(土) 10:47:07.72 ID:Mb+8rzb8.net] {n?N|nは素数}
13 名前:132人目の素数さん mailto:sage [2021/12/25(土) 10:47:51.46 ID:Mb+8rzb8.net] 訂正 {n∈N|nは素数}
14 名前:132人目の素数さん mailto:sage [2021/12/25(土) 11:25:51.58 ID:6+1EKQs4.net] ウスター 中濃 とんかつ
15 名前:132人目の素数さん [2021/12/25(土) 11:34:01.12 ID:0YGYsksh.net] ちなみに、2以外の素数は全て奇数である 2n+1
16 名前:132人目の素数さん mailto:sage [2021/12/25(土) 11:36:11.58 ID:Mb+8rzb8.net] メリークリマス
17 名前:132人目の素数さん mailto:sage [2021/12/25(土) 11:38:03.14 ID:Mb+8rzb8.net] 今日までキリスト教徒
18 名前:132人目の素数さん [2021/12/25(土) 13:28:41.40 ID:OW8JMkuO.net] 素数には規則が無いという規則があるから、どのような規則もできないように数を並べて行けば自ずと素数の羅列になるはず
19 名前:132人目の素数さん mailto:sage [2021/12/25(土) 13:43:29.62 ID:Mb+8rzb8.net] 悪魔の並べ方
20 名前:132人目の素数さん mailto:sage [2021/12/25(土) 15:03:41.78 ID:Mb+8rzb8.net] そうすっか
21 名前:132人目の素数さん [2021/12/25(土) 23:58:04.46 ID:+sMKLuV4.net] 「規則」の定義はなんだよ n番目の素数を表すnの式なんて腐るほどたくさんあるからな??
22 名前:132人目の素数さん [2021/12/26(日) 02:22:39.93 ID:Ioh8KVOJ.net] そりゃあ数列みたいなやつでしょ
23 名前:132人目の素数さん [2021/12/26(日) 08:04:58.27 ID:Fh2z24BT.net] >>22 いやだからn番目の素数を表す一般項なんて腐るほどあるって 素数計量関数でググれ
24 名前:132人目の素数さん [2021/12/26(日) 08:11:38.50 ID:7KTkVEuv.net] https://oeis.org/A003627
25 名前:132人目の素数さん mailto:age [2021/12/28(火) 14:15:32.96 ID:ssWwgjNQ.net] まずは2の倍数を計算する3の倍数も計算する5の倍数も計算する やってると倍数に出てこない数字が見つかる7がそうだから倍数を計算する 11が見つかるからその倍数を計算する素数が見つかったらかけ算して倍数を計算する 考え方を話すと総当たり戦でいくと素数が見つかる素数は倍数で出てこない数字なので 倍数で出てこない数字という素数の法則がある
26 名前:132人目の素数さん mailto:age [2021/12/28(火) 14:17:41.53 ID:ssWwgjNQ.net] 素数の倍数を計算しないと素数がわからない素数の数を知るには素数の倍数を計算する必要がある 素数は素数の近くにある
27 名前:132人目の素数さん mailto:age [2021/12/28(火) 14:18:53.87 ID:ssWwgjNQ.net] 例 2は素数だから素数の倍数の近くに素数が見つかるから
28 名前:132人目の素数さん mailto:age [2021/12/28(火) 14:28:55.66 ID:ssWwgjNQ.net] 他にはスマホの計算機なんかで π×π×π×……とやっていくと πの倍数線上に素数が見つかる法則 全て素数で出るわけじゃなくかけ算して行くことで素数が出てくる 素数だと知っていたら素数が出てくる事に気がつく
29 名前:132人目の素数さん mailto:age [2021/12/28(火) 14:40:48.46 ID:ssWwgjNQ.net] >>28 計算してみると出た数字の近くには素数はあるけど素数は出てこなった
30 名前:132人目の素数さん [2021/12/28(火) 19:24:15.41 ID:FvJC/haV.net] Pi^n for n>13 は合成数であることを証明せよ
31 名前:うそでした [2021/12/28(火) 19:44:10.11 ID:FvJC/haV.net] Pi^{73ーー>1958577254745770740635072198655932631
32 名前:132人目の素数さん [2021/12/28(火) 19:59:04.63 ID:FvJC/haV.net] π^6826 は素数であるか?
33 名前:132人目の素数さん [2021/12/28(火) 21:44:08.60 ID:WiVxjYPe.net] >>32 無理数なんじゃないか?
34 名前:132人目の素数さん [2021/12/28(火) 23:00:56.40 ID:y2bX2Czx.net] 不規則性を見つけたらいい
35 名前:132人目の素数さん [2021/12/28(火) 23:30:52.62 ID:FvJC/haV.net] >>33 整数部分をとるのです。 例 3.14.。ーー>3
36 名前:132人目の素数さん [2021/12/29(水) 00:36:24.28 ID:xU2m6ux6.net] >>35 それなら[π^6826]とか書いて
37 名前:132人目の素数さん [2021/12/29(水) 01:02:34.63 ID:Rl3aK+b2.net] そのとおりですが、4捨5入とためらっていました。 なお答えは素数です。
38 名前:132人目の素数さん mailto:sage [2021/12/30(木) 15:31:53.78 ID:vE7S0lDL.net] 素数は楽しいよな
39 名前:132人目の素数さん [2021/12/30(木) 20:07:50.73 ID:hkqACO8F.net] 素数って可愛い
40 名前:132人目の素数さん [2021/12/30(木) 20:09:36.77 ID:hkqACO8F.net] この世には多くの性的嗜好が存在するが、私は特に稀な「素数性愛」である
41 名前:132人目の素数さん [2021/12/30(木) 20:09:59.68 ID:hkqACO8F.net] だから、素数を見るといつも股間が疼いてしまうよ^ ^
42 名前:132人目の素数さん [2021/12/30(木) 20:10:32.20 ID:hkqACO8F.net] あぁ、素数っていいなぁ…
43 名前:132人目の素数さん [2021/12/30(木) 22:37:06.78 ID:kMEvpIJt.net] 素数の気持ちを考えたことがあるかね?
44 名前:132人目の素数さん [2021/12/31(金) 07:19:56.49 ID:d5acswB9.net] チョボタレフの密度定理の証明を 幾何学的に説明した人はいますか
45 名前:132人目の素数さん mailto:sage [2022/01/01(土) 03:29:06.42 ID:o466FYaz.net] 整数ってズラズラ 偶数ってチョコチョコ 素数ってパラパラ
46 名前:132人目の素数さん [2022/01/01(土) 19:57:47.27 ID:U1iQnRCe.net BE:131149538-2BP(1000)] https://img.5ch.net/ico/foruda2.gif なんか知らんけど 素数の二乗 - その前の素数の二乗 は必ず4で割れることは見つけた
47 名前:132人目の素数さん [2022/01/01(土) 20:07:59.53 ID:gDc9k5MT.net] 3^2-2^2=5
48 名前:132人目の素数さん [2022/01/01(土) 20:18:29.72 ID:fyg9XD4a.net] >>46 (6n±1)2-(6m±1)2 だからだよー
49 名前:132人目の素数さん mailto:age [2022/01/02(日) 01:24:28.92 ID:tY6jgVW9.net] 2の倍数 倍数じゃない数字 倍数じゃない数字の倍数 倍数じゃない数字の見つけかた法則とは
50 名前:132人目の素数さん mailto:age [2022/01/02(日) 01:41:33.95 ID:tY6jgVW9.net] 2の倍数A 倍数じゃない数字B 倍数じゃない数字の倍数C
51 名前:132人目の素数さん mailto:age [2022/01/02(日) 02:28:42.02 ID:tY6jgVW9.net] 2の倍数A 倍数じゃない数字B Bの倍数C A-1が倍数じゃない数字の確率 全数字の中にある倍数じゃない数字B 全数字の中にあるB倍数C 2の倍数は偶数 奇数と偶数は50:50 ○素数-1は偶数で2の倍数 ◎偶数÷2は素数の場合がある ○素数の倍数は奇数 ◎全ての素数は偶数÷2であらわせる 奇数の中には ・素数 ・素数の倍数がある ○全ての偶数は2の倍数 ○全ての奇数は?1の倍数でもなく3の倍数でもなく5の倍数でもない 奇数の倍数ではない数字は素数 1.3.5.7.9.11.13.15.17.
52 名前:132人目の素数さん [2022/01/02(日) 09:10:21.90 ID:Mpac4vQ2.net] 4で割って1余る素数と4で割って3余る素数は50:50
53 名前:132人目の素数さん mailto:sage [2022/01/02(日) 12:57:00.79 ID:ShmIZUMk.net] >>46 24で割れるぞ そういうスレがちょっと前に立ってた
54 名前:132人目の素数さん mailto:sage [2022/01/02(日) 13:01:10.06 ID:ShmIZUMk.net] 奇素数 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,…について コラッツ操作 つまり、3倍して1を足して2で割る、をする 結果は 5,8,11,17,20,26,29,35,44,47,56,62,65,71,80,89,92,101,107,110,… ここで2の倍数でも5の倍数でもないものを抜き出してみよう 11,17,29,47,71,89,101,107 そう、全部素数だ
55 名前:132人目の素数さん mailto:sage [2022/01/02(日) 17:17:03.43 ID:AQKchKAL.net] 奇素数 79 について コラッツ操作 つまり、3倍して1を足して2で割る、をする 結果は 119 ここで2の倍数でも5の倍数でもないものを抜き出してみよう 119 そう、合成数だ
56 名前:132人目の素数さん [2022/01/10(月) 09:26:27.99 ID:3jQp7t7t.net] 3に3で割れず1の位が2でない偶数を足すと素数
57 名前:132人目の素数さん [2022/01/10(月) 12:46:56.22 ID:R78RIwTz.net] クソスレたてるな https://rio2016.5ch.net/test/read.cgi/math/1641774502/
58 名前:132人目の素数さん [2022/01/11(火) 23:01:25.20 ID:EJ/92kUn.net] >>57 嵐しかないじゃん
59 名前:132人目の素数さん [2022/07/20(水) 16:39:37.77 ID:RRMfchFJ.net] 素数の階差数列は 1,2,2,4,2,4,2,4,6,2,6,2,2 ...となりますね さらに階差数列をとると 1,0,2,-2,2,-2,2,2,-4,4,-4,0 となりますね 更に階差数列をとると -1,2,-4,4,-4,4,0,-6,8,-8,4 となります 更に階差数列をとると 3,-6,8,-8,8,-4,-6,14,16,12 ...とやっていって 規則性が出るのでしょうか https://oshiete.goo.ne.jp/qa/11129613.html
60 名前:132人目の素数さん [2022/07/20(水) 17:13:12.74 ID:RRMfchFJ.net] https://mobile.twitter.com/imakarasuugaku/status/891549728126586880 堀口智之 @imakarasuugaku ギルブレスの予想も相当やばい。 素数を書き出して行ってその隣接する項の引き算をして絶対値をとった数列を考える。その引き算を繰り返すと最初の列以外の列の最初の数は1で始まる 2.3.5.7.11.17.19 1.2.2.4.2.4 1.0.2.2.2 1.0.2.0 1.2.2 (deleted an unsolicited ad)
61 名前:132人目の素数さん [2022/07/20(水) 21:06:35.14 ID:2vz9Fgd5.net] >>18 > 素数には規則が無いという規則があるから、 13日にNHKの「笑わない数学」が素数の話をしてて、 素数の並びには美しい規則があって、 それを最初に発見したのがオイラーやらガウスやらで、 感動しながら見てました。 おれは文系の数学音痴ですけど、 > 素数には規則が無いという規則があるから、 こゆこと書く人は、おれと同じ文系の数学音痴だとバレバレっすよ! Fランの数学科は文系の数学音痴と同じかもしれませんが(笑)
62 名前:132人目の素数さん mailto:sage [2022/07/20(水) 21:45:59.51 ID:IQZs3Ae3.net] 素数をいじるとシェルピンスキーガスケットになるやつなかったっけ?
63 名前:132人目の素数さん mailto:sage [2022/07/21(木) 05:05:29.42 ID:pNiusfuW.net] >>61 素数のランダム性でリーマン予想の言い換えができる
64 名前:132人目の素数さん [2022/09/16(金) 00:39:32.95 ID:wXqjex4m.net] >>61 いや規則があるならなんで発見されてないことになってんのよ
65 名前:132人目の素数さん [2022/09/16(金) 01:19:30.20 ID:a2gmGTFL.net] wikiによると現在の見つかっている最大の素数は、 51番目のメルセンヌ素数 282589933 − 1とあります。 コンピュータに計算させて、これより大きい素数を仮に発見したら、 数学として何か意味のあることですか?
66 名前:素数に関心あり [2022/09/26(月) 13:35:20.35 ID:RVu93ABC.net] >>1 その素数の並びが、 無限に続くことを証明できますか?
67 名前:132人目の素数さん mailto:sage [2022/09/26(月) 14:42:59.47 ID:lfUw2+cn.net] SCALABLE MATTER? 09/26 14食42口
68 名前:132人目の素数さん [2022/10/01(土) 02:15:38.92 ID:dZ2OkH57.net] いくらでも大きな素数が存在することはユークリッドの時代から知られていたこと。
69 名前:132人目の素数さん mailto:sage [2022/10/01(土) 03:24:38.60 ID:l/W8p23M.net] Scramble Matter? 10/01 03:24
70 名前:132人目の素数さん mailto:sage [2022/10/01(土) 12:53:41.01 ID:3/Iwccmj.net] 素数の規則って相変わらず未だに知られてないイメージが先行されてるな
71 名前:132人目の素数さん [2022/10/23(日) 00:02:40.68 ID:WLsHTnFU.net] >>70 どういうこと?普通、規則が見つかったらビッグニュースになるでしょ。
72 名前:132人目の素数さん mailto:sage [2022/10/23(日) 00:13:36.21 ID:LvUgA5JJ.net] 既知のものとして有名なのが「2,3を除いた任意の素数pについて、p=6m+1かp=6m-1かどちらかを満たすm(mは1以上の整数)が存在する」なんだが、これは明らかに素数の規則 もしこれを知らない人が表とか使ってこの性質を見つけたとしたらきっと「素数の規則を見つけた!」って喜ぶと俺は思う
73 名前:132人目の素数さん [2022/10/26(水) 17:48:44.90 ID:yQGb1mps.net] 素数とは、その列を増加順に並べたときに、 自分よりも前の1以外の整数では割りきれない整数のことだよ。
74 名前:132人目の素数さん [2022/10/26(水) 19:05:24.35 ID:rCncNts8.net] 実のところ、素数の一般式は1964年に見つかってる https://wikimedia.org/api/rest_v1/media/math/render/svg/350aec20a0065e791db5edf02d3731001cc43aac
75 名前:132人目の素数さん [2022/10/27(木) 19:25:33.06 ID:0nGVjwl6.net] >>74 整数論これで終わりやん
76 名前:132人目の素数さん mailto:sage [2022/10/27(木) 21:19:51.74 ID:K8pDOfCX.net] よっしゃあ!!!!
77 名前:132人目の素数さん [2022/10/28(金) 04:35:03.07 ID:tAdqAgJL.net] どうしてそれで素数の式になるの? 双子素数の予想とかに使えないのかね。
78 名前:132人目の素数さん [2022/10/29(土) 11:05:24.35 ID:JEtotVre.net] >>72 私、なんとなく整数の列を書きまくって、 素数だけ印をつけていってたら、 たまたまそれを発見した。 新発見だー!って大喜びして、 交流サイトに投稿したところ、 既に発見されていた・・・。 なんか、こういうの、本当にガクッと来ますね。。。
79 名前:132人目の素数さん mailto:sage [2022/10/29(土) 13:05:32.46 ID:7zQTjzXt.net] 世界中にどのくらいのひとがいて 素数や数学に興味を持っているひとがどのくらいいて 歴代のその中にはラマヌジャンみたいな天才もいて・・・ と考えてみれば、そんな簡単に未知の法則なんて 落ちてないと気づくはず。 「自分にだけ誰も気づいていない奇蹟のようなアイデアが浮かぶ」 と思うのは精神が幼稚。
80 名前:132人目の素数さん mailto:sage [2022/10/29(土) 13:21:39.76 ID:7zQTjzXt.net] 6m±1って、「2でも3でも割れない整数」を式で表したものだよね。 つまり整数の全体を「2,3」を使って篩にかけてるわけ。 とすれば、篩として使う素数を増やせばいいんじゃないか? とか、そもそも篩の方法をもっと洗練させることはできないか? という考えは自然に浮かぶ。素朴な篩としては エラトステネスの篩やルジャンドルの篩があるが ブルンは今日「ブルンの篩」と呼ばれる方法を編み出して 次のことを示した。 「双子素数の逆数和は収束する」 https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%AB%E3%83%B3%E5%AE%9A%E6%95%B0 素数の逆数和は発散することから、これは意味のある結果。
81 名前:132人目の素数さん mailto:aiueo [2022/10/29(土) 13:48:30.23 ID:FgUGV53s.net] 研究者は全員精神が幼稚らしい
82 名前:132人目の素数さん mailto:sage [2022/10/29(土) 14:20:09.64 ID:7zQTjzXt.net] (自称でない)研究者は奇蹟を期待していない。 「このくらいのことは誰か考えている」 というのは分かっていて、合理的な努力をしているはず。 たとえば「ブルンの篩」は決して難しすぎるものではなく むしろ素朴なアイデアだが ブルンが初めて発見できた理由は、当時は 「誰も考えていない方向性」だったから。 それに対して、素数表を眺めて「何かないか」 とやるのは、誰でも考えることであり 合理的な努力とは言えない。
83 名前:132人目の素数さん mailto:sage [2022/10/30(日) 02:01:18.40 ID:C7AMcbuT.net] 純粋に遊びとして車輪の再発明でもいいから規則を見つけたいなと考えるぐらいなら趣味として楽しいはずだし、そんなにストイックにならなくていい。 ただ、趣味で楽しむレベルで1人で独自研究やってたらなんかすごいの見つけた!となったとしたら、謙虚な心を忘れずに専門性のあるヒマな人に確認をとってほしい(99.999999%再発見か何かしら間違ってる)。ズバッと指摘されると思うけれど、正確に議論をするための愛のムチなので甘んじてうけよう。
84 名前:132人目の素数さん [2022/11/01(火) 02:27:11.63 ID:53u45WGX.net] >>79 そんなこと言ってるやつには少なくとも未知のアイデアは浮かばないよね
85 名前:132人目の素数さん [2022/11/01(火) 02:29:31.20 ID:53u45WGX.net] >>74 まじ?
86 名前:132人目の素数さん mailto:sage [2022/11/01(火) 04:06:33.12 ID:ZDb+14YR.net] 素数をあらわす公式達 https://en.wikipedia.org/wiki/Formula_for_primes >>74 の公式もそうだけど、実は大して意味がない。 「素数定理」の方が遥に深く重要。 そんなことも分からない「公式バカ」は数学に向いてないね。
87 名前:132人目の素数さん [2022/11/01(火) 17:50:07.18 ID:z939ax0v.net] Riemann ζ の非自明な零点の虚部の数論的意味はなんだね? 超越数なのか、明示式とか数論的性質はなんかわかっているのか? 俺にはわからんが
88 名前:132人目の素数さん [2022/11/02(水) 08:07:28.83 ID:N+Kz71Di.net] 不定方程式の研究に導かれて 素数の規則が発見されてきた
89 名前:132人目の素数さん [2022/11/02(水) 08:53:26.35 ID:Sk8HArow.net] いま二進数表現で表される1未満の実数xを xの小数点以下kビット目をもしもkが素数なら1に、kが素数で無ければ0にして 定義すれば、そのような実数xは存在して、しかも無理数であることはほぼ自明 であろう。そうしてそのxの値だけからすべての素数を計算によって取り出す ことができるのだ。
90 名前:132人目の素数さん [2022/11/03(木) 19:35:16.64 ID:Lcrz7KT1.net] pを素数とするときに xのp乗の和 f(x)=\sum_{p:prime} x^p という関数は収束半径が1の級数で複素解析的関数になるが、 特に f(1/2)の値がありさえすれば、その値からすべての素数を 回復出来る。f(1/3)などであっても同様。
91 名前:132人目の素数さん [2022/11/06(日) 01:52:01.37 ID:22nSO5oD.net] すべての素数についての性質を調べることは、すなわち この単一の実数の性質を調べることと等価なのだ。
92 名前:132人目の素数さん [2022/11/06(日) 06:51:18.52 ID:wcZTKbBb.net] どういうふうに回復するかが問題
93 名前:132人目の素数さん mailto:sage [2022/11/06(日) 09:53:22.80 ID:nNTYWkJt.net] たとえば10進法で 0.0110101...=a のように 小数点以下素数桁のみ1でそれ以外は0の 実数aを考えると、aはすべての素数の 情報を含んでるってことだろうけど こんな言い換えにはほぼ意味がないだろう。 情報の復元は [10^n a] (mod 10)の値が1か0かで nが素数かそうでないかが分かる。 ただし、[x]はガウスの記号または床函数とする。
94 名前:132人目の素数さん [2022/11/06(日) 10:01:45.80 ID:22nSO5oD.net] f(x)=\sum_{p:prime} x^p とするときに、g(x)=f(x) - x^2 として、 h(x) = {g(x)}^2 という無限巾級数を作ると、 巾級数 h(x) のすべての偶数次(ただし6次以上とする)の項の係数は 零ではないという予想がゴールドバッハの予想に一致する。
95 名前:132人目の素数さん mailto:sage [2022/11/06(日) 10:51:41.33 ID:nNTYWkJt.net] >>94 なるほど、ゴールドバッハの予想が綺麗に表現できるってこと? ま、考えてみれば母函数という、分割数やenumerationでは よく使われる技法ですね。 https://ja.wikipedia.org/wiki/%E5%88%86%E5%89%B2%E6%95%B0 素数論で有用な結果が出るという話は聞いたことがないが。
96 名前:132人目の素数さん mailto:sage [2022/11/19(土) 00:26:41.66 ID:EA8QsSXs.net] f(x)=\sum_{p:prime} x^p 考えてみると、これは意味がないとは言えない。 |x|→1 での漸近挙動が素数の情報を含んでいる。 が、問題は「この函数の性質を知るためには 素数の情報が必要になる」、という循環から抜け出せるか。 つまり、知りたい(素数の)情報とは独立に この函数の情報が得られれば、そのことから 素数の情報が得られることになる。
97 名前:132人目の素数さん mailto:sage [2022/11/19(土) 00:41:07.94 ID:EA8QsSXs.net] トイモデルとして、遥に簡単だが不思議な等式として オイラーの分割恒等式 を挙げておこう。 https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E3%81%AE%E5%88%86%E5%89%B2%E6%81%92%E7%AD%89%E5%BC%8F 証明は簡単と言えば簡単だが、有限では決して起きないことが 無限積では起きていることが不思議。 結果として、分割数に付いての情報が得られる。 同じモノ(量)を2通りに計算することで、意味のある情報が 得られるということは、数学ではよく現れる基本的方法論。
98 名前:132人目の素数さん [2022/11/19(土) 10:49:55.90 ID:R7c4NLgD.net] グリーン・タオの定理 関 真一朗 (著) 出版社 ‏ : ‎ 朝倉書店 (2023/1/13) 発売日 ‏ : ‎ 2023/1/13 言語 ‏ : ‎ 日本語 単行本 ‏ : ‎ 256ページ ISBN-10 ‏ : ‎ 4254118716 ISBN-13 ‏ : ‎ 978-4254118711 Amazon 売れ筋ランキング: - 178,692位本 売れとらんなぁ。
99 名前:132人目の素数さん [2022/11/19(土) 12:33:34.75 ID:X0cNy/6h.net] 発売日の前にその順位は驚異的
100 名前:132人目の素数さん mailto:sage [2022/11/19(土) 14:25:44.81 ID:xd+MzP+2.net] |ζ(x+i*y)|=1/√(1+1/2^(2x)-2*cos(y*ln2)/2^x)*(1+1/3^(2x)-2*cos(y*ln3)/3^x)*(1+1/5^(2x)-2*cos(y*ln5)/5^x)*(1+1/7^(2x)-2*cos(y*ln7)/7^x)*・・・*(1+1/n^(2x)-2*cos(y*lnn)/n^x)) y*ln(Πk)) mod 2π = 0 y*lnΠP(k) mod 2π≒π
101 名前:132人目の素数さん [2022/11/23(水) 06:10:06.38 ID:fDR3NyfP.net] マイナンバーが素数の人がどれだけいるかな?
102 名前:132人目の素数さん mailto:sage [2022/11/24(木) 21:56:08.33 ID:jG+YUmbb.net] |ζ(x+i*y)|=1/1^(x+i*y)+1/2^(x+i*y)+1/3^(x+i*y)+1/4^(x+i*y)+1/5^(x+i*y)+1/6^(x+i*y)+1/7^(x+i*y)+1/8^(x+i*y)+1/9^(x+i*y)+・・・=Σ1/k^(x+i*y) 1と素数だけで構成されたのゼータ関数→1/1^s+1/2^s+1/3^s+1/5^s・・・=|ζ(x+i*y)|-(1/2^s+1/2^2s+・・・・)*(1/3^s+1/3^2s+・・・・)*(1/5^s+1/5^2s+・・・・)*・・・ 1/1^s+1/2^s+1/3^s+1/5^s・・・=|ζ(x+i*y)|*(1-(1/2^s*1/3^s*1/5^s*・・・))≒|ζ(x+i*y)| 1と素数だけのゼータ関数も非自明なゼロ点は同じ
103 名前:132人目の素数さん mailto:sage [2022/11/24(木) 23:12:03.11 ID:jG+YUmbb.net] 2^2*3^2*5^2*(1+1/2^2+1/3^2+1/5^2)) mod (5^2*2^2) =61 2^2*3^2*5^2*(1+1/2^2+1/3^2+1/5^2))-12*(5^2*2^2) = 61 2^2*3^2*5^2*(1+1/2^2-11/3^2+1/5^2)) = 61 2^4*3^3*5^2*7^2*11^2*(1/7^2+1/2^4*1/3^3*1/5^2*1/11^2)) mod 7^2 =19
104 名前:132人目の素数さん mailto:sage [2022/11/25(金) 12:04:53.33 ID:fMJJ7BOB.net] >>102 デタラメ
105 名前:132人目の素数さん mailto:sage [2022/11/25(金) 12:07:50.97 ID:fMJJ7BOB.net] Prime zeta function https://en.wikipedia.org/wiki/Prime_zeta_function https://mathworld.wolfram.com/PrimeZetaFunction.html
106 名前:132人目の素数さん mailto:sage [2022/11/26(土) 00:28:16.02 ID:pIQXpZJr.net] >>104 修正した |ζ(x+i*y)|=1/1^(x+i*y)+1/2^(x+i*y)+1/3^(x+i*y)+1/4^(x+i*y)+1/5^(x+i*y)+1/6^(x+i*y)+1/7^(x+i*y)+1/8^(x+i*y)+1/9^(x+i*y)+・・・=Σ1/k^(x+i*y) 1と素数だけで構成されたのゼータ関数→1/1^s+1/2^s+1/3^s+1/5^s・・・=|ζ(x+i*y)|-(1/2^s+1/2^2s+・・・・)*(1+1/3^s+1/3^2s+・・・・)*(1+1/5^s+1/5^2s+・・・・)*・・・*( =|ζ(x+i*y)|-1/2^s*|ζ(x+i*y)|-1/(1-1/2^s)*1/3^s*|ζ(x+i*y)|-1/(1-1/2^s)*1/(1-1/3^s)*1/5^s*|ζ(x+i*y)|-・・・ P(n)は無限大の素数 1と素数だけで構成されたのゼータ関数→1/1^s+1/2^s+1/3^s+1/5^s・・=|ζ(x+i*y)|*(1-1/2^s-1/(1-1/2^s)*1/3^s-1/(1-1/2^s)*1/(1-1/3^s)*1/5^s-・・・・-1/ζ(x+i*y)*1/P(n)^s) |ζ(x+i*y)|が抜き出せるので非自明なゼロ点は同じ 1から連続した無限個の整数でできた多角形から素数の辺のみを抜き出しても多角形ができる
107 名前:132人目の素数さん mailto:sage [2022/11/26(土) 00:31:35.85 ID:pIQXpZJr.net] 大きさが大小様々な多角形ができるが中心点はx=1/2上にある ゼータ関数がゼロの時無限大の多角形ができる そこからいくつかの整数を抜き出しても多角形ができる その中心点と非自明なゼロ点は一致する
108 名前:132人目の素数さん mailto:sage [2022/11/26(土) 20:38:30.49 ID:pIQXpZJr.net] =|ζ(x+i*y)|-1/2^s*|ζ(x+i*y)|-(1-1/2^s)*1/3^s*|ζ(x+i*y)|-(1-1/2^s)(1-1/3^s)*1/5^s*|ζ(x+i*y)|-・・・-1/ζ(x+i*y)*1/P(n)^s*|ζ(x+i*y)|
109 名前:132人目の素数さん mailto:sage [2022/11/26(土) 20:39:04.39 ID:pIQXpZJr.net] 1と素数のみのゼータ関数=|ζ(x+i*y)|-1/2^s*|ζ(x+i*y)|-(1-1/2^s)*1/3^s*|ζ(x+i*y)|-(1-1/2^s)(1-1/3^s)*1/5^s*|ζ(x+i*y)|-・・・-1/ζ(x+i*y)*1/P(n)^s*|ζ(x+i*y)|
110 名前:132人目の素数さん mailto:sage [2022/11/26(土) 20:42:44.98 ID:pIQXpZJr.net] 1と素数のみのゼータ関数=|ζ(x+i*y)|-1/2^s*|ζ(x+i*y)|-(1-1/2^s)*1/3^s*|ζ(x+i*y)|-(1-1/2^s)(1-1/3^s)*1/5^s*|ζ(x+i*y)|-・・・-1/ζ(x+i*y)*1/P(n)^s*|ζ(x+i*y)| 素数の1/2乗の逆数和=1/√1+1/√2+1/√3+1/√5+・・・でできた多角形が一番小さなものの時ゼロ点の一番小さな値が中心に来る 2π*√(1/2^2+14.12^2)の円周上に多角形があるため 素数の1/2乗の逆数和=1/√1+1/√2+1/√3+1/√5+・・は収束して2π*√(1/2^2+14.12^2)=約91になる
111 名前:132人目の素数さん mailto:sage [2022/11/27(日) 05:12:40.49 ID:PvzeLpb6.net] >>110 >素数の1/2乗の逆数和=1/√1+1/√2+1/√3+1/√5+・・は収束して いや、発散するけど。 1/p は発散。1/p < 1/√p なのに、何で 1/√p が収束すると思うんだい?
112 名前:132人目の素数さん mailto:sage [2022/11/27(日) 05:14:51.66 ID:PvzeLpb6.net] 何で初等計算(それさえ間違ってる)でリーマン予想が証明できると思うの? そもそもζ(s)のオイラー積表示が使えるのは、Re(s)=(sの実部)が1より大なるときのみ。 Re(s)<1 でオイラー積が収束するなら、そのsにおいてζ(s)≠0を導いてしまう。 「無限積の収束」とは0にならないことを含意しているから。 循環論法になる。
113 名前:132人目の素数さん mailto:sage [2022/11/27(日) 05:19:21.50 ID:PvzeLpb6.net] まず、数学を勉強すること。 リーマンゼータをやりたいなら複素解析は必須。 (特にζ(s)のRe(s)≦1での定義には解析接続が必要。) しかしもし、統合失調症などを患っているのなら 病気を治してから始めること。 でなきゃ、デタラメのままだよ。
114 名前:132人目の素数さん mailto:sage [2022/11/27(日) 05:23:39.37 ID:PvzeLpb6.net] >>111 ありゃ、なぜかシグマ記号が抜けた。 >いや、発散するけど。 >1/p は発散。1/p < 1/√p なのに、何で >1/√p が収束すると思うんだい?
115 名前:132人目の素数さん mailto:sage [2022/11/27(日) 05:25:53.97 ID:PvzeLpb6.net] Σ1/p は発散。1/p < 1/√p なのに、何で Σ1/√p が収束すると思うんだい?
116 名前:132人目の素数さん [2022/12/08(木) 08:59:52.62 ID:xpFZils6.net] 二つの3乗数の和として二通り以上に表せる素数は 無限個あるか。
117 名前:132人目の素数さん mailto:sage [2022/12/11(日) 23:57:25.18 ID:NlC2JE6A.net] y*ln1+y*ln2+y*ln3+・・・・+y*lnN=2Aπ+(N-1)π 2Aπ=y*lnk/2πの商の総和(A=整数) (N-1)π=y*lnk/2πの余りの総和(N=整数) y=(2A+(N-1))π/ln(Πn) (2A'+(N-1))π/ln(Πn)-(2A+(N-1))π/ln(Πn)=2(A'-A)π/ln(Πn)←ゼロ点の間隔になる
118 名前:132人目の素数さん [2023/01/11(水) 02:38:48.10 ID:LfSbQLh6.net] 年明けちゃいました〜
119 名前:132人目の素数さん [2023/01/28(土) 18:33:26.82 ID:YH4NbMiI.net] 小学2年生の孫が無量大数がどうのこうの言うので 素数が無限個あることを教えた。 迎えに来た息子にそのことを話すと 同じ話を小学2年の時に聞かされたと言った。
120 名前:132人目の素数さん mailto:sage [2023/02/01(水) 23:01:29.42 ID:i+yfCuZE.net] 2^a*3^b*5^c*(1+1/2^a+1/3^b+1/5^c) ←2,3,5で割り切れない値が生成される この値が7^2より小さいとき生成される値は素数 P(n)がn番目の素数の時 1とn番目までの素数のみの逆数和=1+1/2^s+1/3^s+1/5^s+・・・1/P(n)^s に2^s*3^s*・・・*P(n)^sをかけ、生成される値がP(n+1)^2より小さいとき素数になる (1と素数のみのゼータ関数)が0に近づくとき無限この素数積をかけても有限の値になる 無限この素数積*(1と素数のみのゼータ関数) → ∞×0=素数
121 名前:132人目の素数さん mailto:sage [2023/02/01(水) 23:56:09.20 ID:8ufOKEyr.net] ビックバン宇宙の菅数論?
122 名前:132人目の素数さん mailto:sage [2023/02/20(月) 00:50:27.47 ID:x6Rhkjrn.net] ((2*3*5*7)*(1+1/2+1/3+1/5+1/7)) mod (2*3*5) = 7 ((2*3*5*7)*(1+1/2+1/3+1/5+1/7)) =15* (2*3*5) + 0.23*(2*3*5) ((2*3*5*7)*(1+1/2+1/3+1/5+1/7))-15* (2*3*5) = 0.23*(2*3*5) (2*3*5*7)+(2*3*5)*(1-15)+(2*5*7)+(3*5*7)+(2*3*7) = 0.23*(2*3*5)=7 (2*3*5*7)+(2*3*5)*(-2*7)+(2*5*7)+(3*5*7)+(2*3*7)=7*1 ←7がくくりだせるため7で割れる ((2*3*5*7^d)*(1+1/2+1/3+1/5+2^a*3^b*5^c/7^d)) =A* (2*3*5) + B*(2*3*5) ((2*3*5*7^3)*(1+1/2+1/3+1/5+2^3*3^2*5^2/7^3))mod (2*3*5) =13 ((2*3*5*7^3)*(1+1/2+1/3+1/5+2^3*3^2*5^2/7^3))= 2497*(2*3*5) + 0.43*(2*3*5) ((2*3*5*7^3)*(1+1/2+1/3+1/5+2^3*3^2*5^2/7^3))- 2497*(2*3*5) = 0.43*(2*3*5) (2^3*3^2*5^2-2497)=-17*41 7^3*61-17*41*2*3*5=13
123 名前:132人目の素数さん mailto:sage [2023/02/20(月) 01:04:30.84 ID:x6Rhkjrn.net] 7^3*61-2^3*3^29*2*3*5=43 7^3*61-5*139*2*3*5=73 7^3*61-2*347*2*3*5=103 ← 2,3,5,7で割れない かつ11^2よりちいさいため素数 7^3*61-3^2*7*11*2*3*5=133 ←7で割れる
124 名前:132人目の素数さん mailto:sage [2023/03/11(土) 12:30:42.02 ID:61NYUI3c.net] ζ(s)=1と素数のみのゼータ関数+(1/2^s+1/2^2s+・・・)*(1+1/3^s+1/3^2s+1/3^3s+・・・)*・・・+(1/3^s+1/3^2s+1/3^3s+・・・)*(1+1/5^s+1/5^2s+1/5^3s+・・・)・・・+ ζ(s)=(1+1/2^s+1/3^s+1/5^s+・・・)+(1/2^s+・・・)(1+1/3^s+・・・)+(1/3^s+・・・)(1+1/5^s+・・・) (1+1/2^s+1/2^2s+・・・)=1/2^s*(1/2^s+1/2^2s+・・・)=1/(1-1/2^s) ζ(s)-ζ(s)*(1/2^s)-ζ(s)*(1-1/2^s)*(1/3^s)-ζ(s)*(1-1/2^s)*(1-1/3^s)*(1/5^s)-・・・=1と素数のみのゼータ関数 ζ(s)*{1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・}=1と素数のみのゼータ関数 1と素数のみのゼロ点はζ(s)=0のときまたは{1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・}=0のとき
125 名前:132人目の素数さん mailto:sage [2023/03/11(土) 20:04:30.59 ID:61NYUI3c.net] ζ(s)=1+(1/2^s)*ζ(s)+(1-1/2^s)*1/3^s*ζ(s)+(1-1/2^s)*(1-1/3^s)*1/5^s*ζ(s)+・・・+Π(1-1/P(k)^s)*1/P(k+1)^s*ζ(s) ζ(s)-{(1/2^s)*ζ(s)+(1-1/2^s)*1/3^s*ζ(s)+(1-1/2^s)*(1-1/3^s)*1/5^s*ζ(s)+・・・+Π(1-1/P(k)^s)*1/P(k+1)^s*ζ(s)}=1 ζ(s)*{1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-・・・Π(1-1/P(k)^s)*1/P(k+1)^s}=1 0*∞=1 {1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-・・・Π(1-1/P(k)^s)*1/P(k+1)^s} → ∞
126 名前:132人目の素数さん mailto:sage [2023/03/11(土) 21:45:33.15 ID:61NYUI3c.net] |ζ(s)|=1/√(1+1/2^2x-2*cos(y*ln2)/2^x)*1/√(1+1/3^2x-2*cos(y*ln3)/3^x)*1/√(1+1/5^2x-2*cos(y*ln5)/5^x)*・・・*1/√(1+1/P(k)^2x-2*cos(y*lnP(k))/P(k)^x=0 √(1+1/2^2x-2*cos(y*ln2)/2^x)*√(1+1/3^2x-2*cos(y*ln3)/3^x)*√(1+1/5^2x-2*cos(y*ln5)/5^x)*・・・*√(1+1/P(k)^2x-2*cos(y*lnP(k))/P(k)^x=(1+A)*(1-B)=∞ (1/2^2x+1/3^2x+1/5^2x+・・・)-2*(cos(y*ln2)/2^x+cos(y*ln3)/3^x+cos(y*ln5)/5^x+・・・)→∞ 2*(cos(y*ln2)/2^x+cos(y*ln3)/3^x+cos(y*ln5)/5^x+・・・)→0
127 名前:132人目の素数さん [2023/04/03(月) 06:57:42.51 ID:yDIDmN/Q.net] 数セミのζ氏の記事は衝撃的だった
128 名前:132人目の素数さん mailto:sage [2023/04/07(金) 15:00:27.75 ID:IzOrW2wf.net] ζ(s)=1+1/2^s*ζ(s)+(1-1/2^s)*1/3^s*ζ(s)+(1-1/2^s)*(1-1/3^s)*1/5^s*ζ(s)+・・・ ζ(s)=1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π(1-1/p(k)^s)*1/p(n)^s)
129 名前:132人目の素数さん mailto:sage [2023/04/08(土) 11:54:26.55 ID:9QD/txfu.net] 1+1/2^s+1/3^s+1/4^s+1/5^s+1/6^s+・・・1/n^s=1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) 1*2*(1-1/2)=1 2*3*(1-1/2-(1-1/2)*1/3)=2 3*5*(1-1/2-(1-1/2)*1/3-(1-1/2)*(1-1/3)*1/5)=2^2 5*7*(1-1/2-(1-1/2)*1/3-(1-1/2)*(1-1/3)*1/5-(1-1/2)*(1-1/3)*(1-1/5)*1/7)=2^3 7*11*(1-1/2-(1-1/2)*1/3-(1-1/2)*(1-1/3)*1/5-(1-1/2)*(1-1/3)*(1-1/5)*1/7-(1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*1/11)=2^4 Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s=2^n/(p(n-1)*p(n))
130 名前:132人目の素数さん mailto:sage [2023/04/08(土) 14:33:57.95 ID:9QD/txfu.net] 13*11*(1-1/2-(1-1/2)*1/3-(1-1/2)*(1-1/3)*1/5-(1-1/2)*(1-1/3)*(1-1/5)*1/7-(1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*1/11+(1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*1/13)=2^5
131 名前:132人目の素数さん mailto:sage [2023/04/09(日) 00:22:49.59 ID:bvL7IRHN.net] 13*17*(1-1/2-1/6-1/15+4/105-8/385+(80/385*1/13)-80/385*12/13*1/17)≒63=2^6 17*19*(1-1/2-1/6+1/15-4/105+8/385+(80/385*1/13)+80/385*12/13*1/17-80/385*12/13*16/17*1/19)≒129≒2^7 ΣΠ(1-1/p(k)^s)*1/p(n)^s)≒2^n/(p(n)*p(n-1))
132 名前:132人目の素数さん [2023/04/12(水) 01:10:23.48 ID:qqmT0g6P.net] 1+1/2^s+1/3^s+1/4^s+1/5^s+1/6^s+・・・1/n^s=1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) 5以上の整数が無限大の時 1+1/2^s+1/3^s+1/4^s+1/∞^s+1/6^s+1/∞^s+1/8^s+1/9^s+1/∞^s・・・1/n^s=1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/∞^s-(1-1/2^s)*(1-1/3^s)*(1-1/∞^s)*1/∞^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) 1+1/2^s+1/3^s+1/6^s+1/8^s+1/9^s+1/12^s・・・+1/(2^a*3^b)^s=1/(1-1/2^s-(1-1/2^s)*1/3^s) 2と3の因数のみでできたゼータ関数は1/(1-1/2^s-(1-1/2^s)*1/3^s)になる Σ1/(2^a*3^b)=1/(1-1/2-(1-1/2)*1/3) sが1のとき3に収束する 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+1/18+1/24+1/27+1/32+1/36+1/48+1/64+1/72+1/81+1/96+1/108+・・・→1/1/(1-1/2-(1-1/2)*1/3)=3
133 名前:132人目の素数さん [2023/04/12(水) 01:19:26.40 ID:qqmT0g6P.net] 1+1/2^s-1/3^s+1/4^s+1/∞^s-1/6^s+1/∞^s+1/8^s+1/9^s+1/∞^s-1/12^s・・・1/n^s=1/(1-1/2^s+(1-1/2^s)*1/3^s-(1-1/2^s)*(1+1/3^s)*1/∞^s-(1-1/2^s)*(1+1/3^s)*(1-1/∞^s)*1/∞^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) 2と-3の因数のみでできたゼータ関数は1/(1-1/2^s+(1-1/2^s)*1/3^s)になる Σ1/(2^a*(-3)^b)=1/(1-1/2+(1-1/2)*1/3)=1.5 aとbは0以上の整数 sが1のとき1.5に収束する 1+1/2-1/3+1/4-1/6+1/8+1/9-1/12+1/18-1/24-1/27+1/32+1/36-1/48+1/64+1/72+1/81-1/96-1/108+・・・→1/1/(1-1/2+(1-1/2)*1/3)=1.5
134 名前:132人目の素数さん [2023/04/12(水) 01:28:31.09 ID:qqmT0g6P.net] 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+1/18+1/24+1/27+1/32+1/36+1/48+1/64+1/72+1/81+1/96+1/108+・・・→1/1/(1-1/2-(1-1/2)*1/3)=3 1+1/2-1/3+1/4-1/6+1/8+1/9-1/12+1/18-1/24-1/27+1/32+1/36-1/48+1/64+1/72+1/81-1/96-1/108+・・・→1/1/(1-1/2+(1-1/2)*1/3)=1.5 Σ1/(2^a*3^2b)=2.25 1+1/2+1/2^2+1/2^3+1/3^2+1/(2*3^2)+1/(2^5)+1/(2^2*3^2)+1/(2^6)+1/(2^3*3^2)+1/(3^4)+・・・→2.25
135 名前:132人目の素数さん [2023/04/12(水) 01:59:41.81 ID:qqmT0g6P.net] 1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) 因数が3と7のみのゼータ関数の時 ζ(s)=1/(1-1/3^s-(1-1/3^s)*1/7^s) 1/(1-1/3-(1-1/3)*1/7)=1.75 Σ1/(3^a*7^b)→1.75 1+1/3+1/7+1/3^2+1/(3*7)+1/(3^3)+1/7^2+1/3^4+1/3^5+1/7^3+・・・→1.75
136 名前:132人目の素数さん [2023/04/12(水) 02:05:22.35 ID:qqmT0g6P.net] 1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s) Σ(1/(a^n1*b^n2*c^n3)^s=1/(1-1/a^s-(1-1/a^s)*1/b^s-(1-1/a^s)*(1-1/b^s)*1/c^s)
137 名前:132人目の素数さん mailto:sage [2023/04/12(水) 07:14:52.48 ID:ToSsDT4v.net] >>136 左辺における文字の対称性が右辺におけるそれと一致していないね
138 名前:132人目の素数さん mailto:sage [2023/04/12(水) 07:30:38.71 ID:ToSsDT4v.net] リーマンゼータのオイラー積表示 ζ(s)=Π_{p:prime} (1-1/p^s)^{-1} において、素数の集合を部分集合Sに制限すると Π_{p∈S} (1-1/p^s)^{-1} になるだけ。 ただし、無限集合のときはRe(s)>1で収束するが Sが有限集合なら、Re(s)>0 としてよい。 それだけの話。
139 名前:132人目の素数さん [2023/04/12(水) 15:16:36.39 ID:qqmT0g6P.net] >>138 1/((1-1/2^2)*(1-1/3^2)*(1-1/5^2)*(1-1/7^2)*(1-1/11^2)*(1-1/13^2)*(1-1/17^2))*・・・=π^2/6≒1.64 1/((1-1/2^3)*(1-1/3^3)*(1-1/5^3)*(1-1/7^3)*(1-1/11^3)*(1-1/13^3)*(1-1/17^3))*・・・≒1.21(厳密には不明) Σ1/n^(x+iy)=1+2^(x+iy)+3^(x+i*y)+・・・=1/√{(1+1/2^(2x)-2*cos(yln2)/2^x)*(1+1/3^(2x)-2*cos(yln3)/3^x)*(1+1/5^(2x)-2*cos(yln5)/5^x)*(1+1/7^(2x)-2*cos(yln7)/7^x)*・・・) →0 1/√{(1-(2*cos(yln2)/2^x-1/2^2x))*(1-(2*cos(yln3)/3^x-1/3^2x))*・・・) Σ1/n^(x+i*y)=(1+(2*cos(yln2)/2^x-1/2^2x)+(2*cos(yln2)/2^x-1/2^2x)^2+(2*cos(yln2)/2^x-1/2^2x)^3+・・・)*(1+(2*cos(yln3)/3^x-1/3^2x)+(2*cos(yln3)/3^x-1/3^2x)^2+・・・)*・・・ すべての素数を p(1),p(2),…,p(K) とおきます 第3項目以降無視する Σ1/n^(x+i*y)=1+Σ(2*cos(ylnp(k))/p(k)^x-1/p(k)^2x)+・・・≒1+Σ(2*cos(ylnp(k))/p(k)^x-1/p(k)^2x)→0 Σ(2*cos(ylnp(k))/p(k)^x-1/p(k)^2x)→-1に収束するときx=1/2 Σ2*cos(ylnp(k))/√p(k)-Σ1/p(k)→-1 Σ2*cos(ylnp(k))/√p(k)=Σ1/p(k)-1
140 名前:132人目の素数さん [2023/04/12(水) 18:04:11.75 ID:qqmT0g6P.net] Σ2*cos(ylnp(k))/√p(k)=Σ1/p(k)-1 (Σ2*cos(ylnp(k))/√p(k))^2=(Σ1/p(k))^2-2*Σ1/p(k)+1 (Σ2*cos(ylnp(k))/√p(k))^2=4*Σcos(ylnp(k))^2/p(k)+8*買ョcos(ylnp(a))*cos(ylnp(b))/√(p(a)*p(b) (Σ1/p(k))^2=Σ1/p(k)^2+2*買ョ1/p(a)*p(b)) 4*Σcos(ylnp(k))^2/p(k)+8*買ョcos(ylnp(a))*cos(ylnp(b))/√(p(a)*p(b))+2*Σ1/p(k)=Σ1/p(k)^2+2*買ョ1/p(a)*p(b)+1 Σ1/p(k)^2+2*買ョ1/p(a)*p(b)+1は有限の値に収束するため 4*Σcos(ylnp(k))^2/p(k)+8*買ョcos(ylnp(a))*cos(ylnp(b))/√(p(a)*p(b))+2*Σ1/p(k)からΣ1/p(k)の項を消す必要がある
141 名前:132人目の素数さん mailto:sage [2023/04/14(金) 01:45:02.78 ID:QoHCV6m7.net] Σ1/n^(x+iy)=1+2^(x+iy)+3^(x+i*y)+・・・=1/√{(1+1/2^(2x)-2*cos(yln2)/2^x)*(1+1/3^(2x)-2*cos(yln3)/3^x)*(1+1/5^(2x)-2*cos(yln5)/5^x)*(1+1/7^(2x)-2*cos(yln7)/7^x)*・・・) →0 非自明なゼロ点の虚部を小さい素数にかけると2πでわった余りがπに近づく ln2*14.1347 mod 2π≒1.1186π ln2*21.022 mod 2π≒0.638π ln2*25.010 mod 2π≒1.518π ln2*30.424 mod 2π≒0.712π (ln2*32.935 mod 2π)/π≒1.266π ln3*14.1347 mod 2π≒0.942892π ln3*21.022 mod 2π≒1.3513π ln3*25.010 mod 2π≒0.7459π ln2*30.424 mod 2π≒0.6392π (ln3*32.935 mod 2π)/π≒1.517π ln5*14.1347 mod 2π≒1.2412π ln5*21.022 mod 2π≒0.7695π ln5*25.010 mod 2π≒0.8126π ln2*30.424 mod 2π≒1.5862π (ln5*32.935 mod 2π)/π≒0.872π 1/√{(1+1/p(k)+2/√p(k))<1/√{(1+1/p(k)-2*cos(ylnp(k))/√p(k))<1/√{(1+1/p(k)-2/√p(k)) 1+1/p(k)-2*cos(ylnp(k))/√p(k)>1のとき 1/lnp(k)*arccos(1/2*1/√p(k))>y 1/lnp(k)*(2nπ+arccos(1/2*1/√p(k)))<y<1/lnp(k)*(2(n+1)π-arccos(1/2*1/√p(k))) ylnp(k)が下の範囲内の時分母は1より大きいため積が無限に大きくなる (2nπ+0.384947π)<y*ln2<(2(n+1)π-0.384947π) (2nπ+0.40678π)<y*ln3<(2(n+1)π-0.40678π) (2nπ+0.42821π)<y*ln3<(2(n+1)π-0.42821π)
142 名前:132人目の素数さん mailto:sage [2023/05/21(日) 01:40:00.53 ID:1J9WtyC7.net] 2*3*5*7*11*13*17*19*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19) mod 30 =17 2*3*5*7*11*13*17*19*23*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23) mod 30 =1 2*3*5*7*11*13*17*19*23*29*31*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31) mod 30 =29 2*3*5*7*11*13*17*19*23*29*31*37*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37) mod 30 =23 2*3*5*7*11*13*17*19*23*29*31*37*41*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41) mod 30=13 2*3*5*7*11*13*17*19*23*29*31*37*41*43*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43) mod 30 =19 2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47) mod 30 =23
143 名前:132人目の素数さん mailto:sage [2023/05/21(日) 01:51:22.50 ID:1J9WtyC7.net] -(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1-1/2-1/3-1/5-1/7-1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47)) mod 210 =67 -(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*(1-1/2-1/3-1/5-1/7-1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53)) mod 210 =191 -(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*(1-1/2-1/3-1/5-1/7-1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59)) mod 210 =139 -(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61(1-1/2-1/3-1/5-1/7-1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61)) mod 210 =79
144 名前:132人目の素数さん mailto:sage [2023/05/21(日) 01:55:50.33 ID:1J9WtyC7.net] -(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*(1-1/2-1/3-1/5-1/7-1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71)) mod 210 =113 -(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*(1-1/2-1/3-1/5-1/7-1/11-1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71)) mod 2310 =1583
145 名前:132人目の素数さん mailto:sage [2023/05/21(日) 01:59:46.37 ID:1J9WtyC7.net] -(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*73*(1-1/2-1/3-1/5-1/7-1/11-1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71*1/73)) mod 2310 =59 -(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*73*79*(1-1/2-1/3-1/5-1/7-1/11-1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71*1/73*1/79)) mod 2310 =41 -(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*73*79*83*(1-1/2-1/3-1/5-1/7-1/11-1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71*1/73*1/79*1/83)) mod 2310 =1093 -(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*73*79*83*89*(1-1/2-1/3-1/5-1/7-1/17-1/11*1/13*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71*1/73*1/79*1/83*1/89)) mod 3570 =887
146 名前:132人目の素数さん [2023/05/21(日) 10:13:32.96 ID:3IunxhIN.net] 素数定理はリーマンζ関数が実部が1の複素引数において零点を持たないということから 導かれるが、その証明にいたるには長い年月が必要だったという。
147 名前:132人目の素数さん mailto:sage [2023/05/22(月) 12:41:57.45 ID:1iNd55ue.net] まず、円周の長さを求めるためには、円の半径が必要です。半径を $r$ とすると、円周の長さ $C$ は以下のようになります。 $$C = 2 \pi r$$ 半径 $r$ に対してセンチメートルやメートル単位で印をつけた円を用意すると、半径 $r$ の長さに対して $2 \pi r$ の長さの円周ができます。この円周上にある素数に当たる数字とその角度度数を計算するには、まずは円周上の一辺の長さと角度度数の関係を求める必要があります。 円周上に等間隔で $n$ 個の点を取ると、各点とその隣の点を結んでできる線分の長さは、円周の長さを $n$ で割ったものとなります。この線分の長さを $l$ とすると、角度 $a$ の弧の長さは、円周の長さ $C$ に対する角度 $a$ の比率で求めることができます。 具体的には、角度 $a$ の弧の長さ $L$ は以下のようになります。 $$L = \frac{a}{360} C = \frac{a}{180} \pi r$$ これを用いて、円周上の素数に当たる数字とその角度度数を計算することができます。ただし、素数が円周上に均等に分布しているとは限らないため、どのようなアルゴリズムを使用するかによって、計算方法が異なる場合があります。
148 名前:132人目の素数さん mailto:sage [2023/05/22(月) 12:42:07.90 ID:1iNd55ue.net] 素数11に対応する角度を求めるには、円周上に均等に分布した $n$ 個の点のうち、11番目の点の角度を求める必要があります。ただし、円周上に均等に分布する $n$ 個の点を求めるには、何らかのアルゴリズムを使用する必要があります。 ここでは、半径が1の円に対して、円周上に均等に分布した 360 個の点を使用することにします。この場合、各点の角度は $360^\circ / 360 = 1^\circ$ であり、11番目の点の角度は $11 \times 1^\circ = 11^\circ$ となります。 また、半径が $r$ の円に対して、同様に均等に分布した $n$ 個の点を使用する場合、各点の角度は $360^\circ / n$ であり、素数 $p$ に対応する角度は $p \times 360^\circ / n$ となります。したがって、円の大きさや素数に応じて、角度を計算することができます。
149 名前:132人目の素数さん mailto:sage [2023/05/22(月) 12:44:03.72 ID:1iNd55ue.net] 円周と素数と角度には、いくつかの関係や法則が知られています。 1つの例として、素数定理と呼ばれる法則があります。素数定理は、ある正の整数 $x$ 以下の素数の個数 $π(x)$ と、$x$ に十分に近い値 $x/\ln x$ の関係を表すものです。この法則によれば、十分大きな $x$ に対して、素数の個数 $π(x)$ はおよそ $x/\ln x$ に等しくなると予想されます。 また、円周上に均等に分布する素数に関する問題にも興味が持たれています。具体的には、円周上に均等に分布する素数の個数や、その分布パターンに関する研究が行われています。 さらに、円周上に均等に分布する点の角度を求めるためのアルゴリズムとして、円周上の点を等間隔に区切る方法が知られています。この方法により、任意の数の点を円周上に均等に分布させることができます。 これらの関係や法則は、数学の分野である「解析数論」や「幾何学的位相学」などで研究されています。
150 名前:132人目の素数さん mailto:sage [2023/05/27(土) 12:15:28.04 ID:OF9d/wxI.net] e^(i*2π*7*11*13*(1-1/2^3-1/3^2-1/5) )=e^(i*163/180) e^(i*2π*7*11*13*17*(1-1/2^3-1/3^2-1/5) )=e^(i*109/180) e^(i*2π*(n+1番目からm番目の素数積)*(1番目からn番目の素数の逆数和))=e^(i*素数/180) (1番目からn番目の素数の逆数和)/(n+1番目からm番目の素数積)の商が (n+1番目からm番目の素数積)の素数を素因数に持たないとき また(m+1番目の素数)^2>1番目からn番目の素数積のとき 必ずe^(i*素数/180)になる
151 名前:132人目の素数さん mailto:sage [2023/05/28(日) 02:25:26.45 ID:V+woUDG6.net] e^(i*π*7*11*13*(1-1/2^3-1/3^2-1/5) )=e^(i*π*163/360) ←350で割ったあまりのみ見るので等しい e^(i*π*7*11*13*(1-1/2^3-1/3^2-1/5)/163)≠e^(i*π*1/360) ←商も割られるのでイコールにならない e^(i*π*7*11*13*(1-1/2^3-1/3^2-1/5)/163)=e^(-i*π*31517/58680)
152 名前:132人目の素数さん mailto:sage [2023/05/28(日) 11:01:01.73 ID:V+woUDG6.net] e^(i*π*(1-(N-1)!)/N)=e^(i*π*/N) Nが素数の時 e^(i*π*(1-(N-1)!)/N)=e^(i*π*/N) Nが非素数の時 e^(i*π*(1-(N-1)!)/N)=-1
153 名前:132人目の素数さん mailto:sage [2023/05/28(日) 11:20:29.28 ID:V+woUDG6.net] e^(i*π*(1-(N-1)!/N))=e^(i*π*/N) Nが素数の時 e^(i*π*(1-(N-1)!/N))=e^(i*π*/N) Nが非素数の時 e^(i*π*(1-(N-1)!/N))=-1 e^(i*π*(1-(2-1)!/2))=e^(i*π*/2) e^(i*π*(1-(3-1)!/3))=e^(i*π*/3) e^(i*π*(1-(4-1)!/4))=e^(i*-π*/2) N=4のときのみ-iになる e^(i*π*(1-(5-1)!/5))=e^(i*π*/5) e^(i*π*(1-(6-1)!/6))=-1 e^(i*π*(1-(7-1)!/7))=e^(i*π*/7) e^(i*π*(1-(2-1)!/2))*e^(i*π*(1-(3-1)!/3))*e^(i*π*(1-(5-1)!/5))=e^(i*π*/5)*e^(i*π*/3)*e^(i*π*/2) e^(i*π*2*3*5*(3-(2-1)!/2-(3-1)!/3-(5-1)!/5)))=e^(i*π*2*3*5*(1/2+1/3+1/5)) e^(i*π*2*3*5*7*(3-(2-1)!/2-(3-1)!/3-(5-1)!/5-(7-1)!/7)))=-1 e^(i*π*2*3*4*7*(3-(2-1)!/2-(3-1)!/3-(4-1)!/4-(7-1)!/7)))=1 e^(i*π*2*3*4*6*(3-(2-1)!/2-(3-1)!/3-(4-1)!/4-(6-1)!/6)))=1 X(N)がすべて素数の時 e^(i*π*ΠX(N)*Σ(1-(X(N)-1)!/X(N)))=-1 X(N)がすべて素数でないとき e^(i*π*ΠX(N)*Σ(1-(X(N)-1)!/X(N)))=1
154 名前:132人目の素数さん mailto:sage [2023/05/28(日) 19:44:13.94 ID:V+woUDG6.net] e^(i*π*(1/2-(2-1)!/2^2))=e^(i*π*/2^2) e^(i*π*(1/3-(3-1)!/3^2))=e^(i*π*/3^2) e^(i*π*(1/5-(5-1)!/5^2))=e^(i*π*/5^2) Σ(1/P(n)-(1-P(n))!/P(n)^2) mod 2π=π^2/6 e^(i*π*(1/2^2-(2-1)!/2^3))=e^(i*π*/2^3) e^(i*π*(1/3^2-(3-1)!/3^3))=e^(i*π*/3^3) e^(i*π*(1/5^2-(5-1)!/5^3))=e^(i*π*/5^3) (π^2/6-Σ((1-P(n))!/P(n)^3)) mod 2π=Σ(1/P(n)^3) π^2/6=Σ(1+(1-P(n))!)/P(n)^3 mod 2π
155 名前:132人目の素数さん mailto:sage [2023/05/28(日) 20:36:09.66 ID:V+woUDG6.net] e^(i*π*((N-1)/N*(1-(N-1)!/N-1/N)+(1/N-(N-1)!/N^2)))=e^(i*π/N^2) e^(i*π*((2-1)/2*(1-(2-1)!/2-1/2)+(1/2-(2-1)!/2^2)))=e^(i*π/2^2) e^(i*π*((3-1)/3*(1-(3-1)!/3-1/3)+(1/3-(3-1)!/3^2)))=e^(i*π/3^2) e^(i*π*((5-1)/5*(1-(5-1)!/5-1/5)+(1/5-(5-1)!/5^2)))=e^(i*π/5^2) Σ((P(n)-1)/P(n)*(1-(P(n)-1)!/P(n)-1/P(n))+(1/P(n)-(P(n)-1)!/P(n)^2)) mod 2π=π^2/6
156 名前:132人目の素数さん mailto:sage [2023/05/28(日) 20:40:38.48 ID:V+woUDG6.net] e^(i*π*((N^2-1)/N^2*(1-(N-1)!/N-1/N)+(1/N^2-(N-1)!/N^3)))=e^(i*π/N^3) e^(i*π*((2^2-1)/2^2*(1-(2-1)!/2-1/2)+(1/2^2-(2-1)!/2^3)))=e^(i*π/2^3) e^(i*π*((3^2-1)/3^2*(1-(3-1)!/3-1/3)+(1/3^2-(3-1)!/3^3)))=e^(i*π/3^3) e^(i*π*((5^2-1)/5^2*(1-(5-1)!/5-1/5)+(1/5^2-(5-1)!/5^3)))=e^(i*π/5^3) Σ((P(n)^2-1)/P(n)^2*(1-(P(n)-1)!/P(n)-1/P(n))+(1/P(n)^2-(P(n)-1)!/P(n)^3)) mod 2π=Σ1/P(n)^3
157 名前:132人目の素数さん mailto:sage [2023/05/28(日) 20:46:55.29 ID:V+woUDG6.net] ((P(n)^2-1)/P(n)^2*(1-(P(n)-1)!/P(n)-1/P(n))+(1/P(n)^2-(P(n)-1)!/P(n)^3))=1/P(n)^3 - (Γ(P(n)) + 1)/P(n) + 1 (Σ1/P(n)^3 -Σ (Γ(P(n)) + 1)/P(n) +Σ 1) mod 2π = Σ1/P(n)^3 Σ(1-(Γ(P(n))+1)/P(n)) mod 2π =0 ((P(n)^2-1)/P(n)^2*(1-(P(n)-1)!/P(n)-1/P(n))+(1/P(n)^2-(P(n)-1)!/P(n)^3))=-((P(n) - 1)! + 1)/P(n) + 1/P(n)^3 + 1 Σ(1-(P(n)-1)!+1)/P(n)) mod 2π =0
158 名前:132人目の素数さん mailto:sage [2023/05/28(日) 22:08:57.82 ID:V+woUDG6.net] N=素数のとき e^(i*π*(1-((N-1)!+1)/N))=1 N=非素数の時 e^(i*π*(1-((N-1)!+1)/N))=e^(i*π*((N-1)/N))
159 名前:132人目の素数さん mailto:sage [2023/05/29(月) 13:13:50.15 ID:OThGd2Z7.net] 1*2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11+1/(13*17*19*23*29*31*37*41*43*47)) は47以下の素因数で割れない数 1*2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11+1/(13*17*19*23*29*31*37*41*43*47)) mod (2*3*5*7*11) =X Xは13以上の大きさの素因数を持つ可能性がある 1*2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11+1/(13*17*19*23*29*31*37*41*43*47))/ (2*3*5*7*11)の商=A 1*2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11+1/(13*17*19*23*29*31*37*41*43*47))-A (2*3*5*7*11)=X 1*2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11+(1-A)/(13*17*19*23*29*31*37*41*43*47))=X (1-A)が13以上の大きさの素因数をもつときその数で割り切れる (1-A)が13以上の素因数を持つとき1足して素因数で割れなくする
160 名前:132人目の素数さん mailto:sage [2023/05/29(月) 13:14:05.46 ID:OThGd2Z7.net] e^(i*π*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(-i1403π/2310) ←1403 =23*61 e^(i*π*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(i907π/2310) ←907 =素数 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^2*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(i1367π/2310) ←1367 =素数 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^2*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(i943π/2310) ←943 =23*41 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^3*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(i2017π/2310) ←2017=素数 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^3*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(-i293π/2310) ←293=素数 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^4*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(-i1333π/2310) ←1333=31*43 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^4*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(i977π/2310) ←977=素数 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^a*(1/2+1/3+1/5+1/7+1/11-b/(13*17*19*23*29*31*37*41*43*47)) ) (13*17*19*23*29*31*37*41*43*47)の指数aとbを変更することで2310以下の素数をたくさん求められる
161 名前:132人目の素数さん mailto:sage [2023/06/28(水) 00:13:16.64 ID:27GX6rbZ.net] (((11*13*17^2) mod 2)/2+((11*13*17^2) mod 3)/3+((11*13*17^2) mod 5)/5+((11*13*17^2) mod 7)/7) mod 1 = 89/210 (((19^3*13^2*17^2) mod 2)/2+((19^3*13^2*17^2) mod 3)/3+((19^3*13^2*17^2) mod 5)/5+((19^3*13^2*17^2) mod 7)/7+((19^3*13^2*17^2) mod 11)/11) mod 1 =2063/2310 (((19^3*13^2*17^2) mod 2)/2+((19^3*13^2*17^2) mod 3)/3+((19^3*13^2*17^2) mod 5)/5+((19^3*13^2*17^2) mod 7)/7+((19^3*13^2*17^2) mod 11)/11) mod 1 =1409/2310 e^(i*a*(1/b+1/c))=e^(i*a/b)*e^(i*a/c)=e^(i*(a mod b)/b)*e^(i*(a mod c)/c) a*(1/b+1/c) ≠(a mod b)/b(a mod c)/c
162 名前:132人目の素数さん [2023/07/14(金) 12:02:09.00 ID:1XN1Q0I4.net] p(n)がn番目の素数の時 e^(i*π*(1/p(1)+1/p(2))) -P(3)^2/(p(1)*p(2))<(1/p(1)+1/p(2)) <P(3)^2/(p(1)*p(2))を満たすとき(1/p(1)+1/p(2)) の分子は素数 e^(i*π*(3/2+3/3^2+16/5^3))=e^(i*π*-29/150) e^(i*π*(3/2+3/3^2+17/5^3))=e^(i*π*-23/150) e^(i*π*(3/2+3/3^2+18/5^3))=e^(i*π*-17/150) e^(i*π*(3/2+3/3^2+19/5^3))=e^(i*π*-11/150) e^(i*π*(3/2+3/3^2+20/5^3))=e^(i*π*-1/150) e^(i*π*(3/2+3/3^2+21/5^3))=e^(i*π*1/750) e^(i*π*(3/2+3/3^2+22/5^3))=e^(i*π*7/750) e^(i*π*(3/2+3/3^2+23/5^3))=e^(i*π*13/750) e^(i*π*(3/2+3/3^2+24/5^3))=e^(i*π*19/750) e^(i*π*(3/2+3/3^2+25/5^3))=e^(i*π*1/30) e^(i*π*(3/2+3/3^2+26/5^3))=e^(i*π*31/750) e^(i*π*(3/2+3/3^2+27/5^3))=e^(i*π*37/750) e^(i*π*(3/2+3/3^2+16/5^3+14/7^3))=e^(i*π*79/36750) ←1/7^3の刻みが大きすぎる e^(i*π*(3/2+1/3-1/5+122/7^3))=e^(i*π*-113/10290) e^(i*π*(3/2+1/3-1/5+123/7^3))=e^(i*π*-83/10290) e^(i*π*(3/2+1/3-1/5+124/7^3))=e^(i*π*-53/10290) e^(i*π*(3/2+1/3-1/5+125/7^3))=e^(i*π*-23/10290) e^(i*π*(3/2+1/3-1/5+126/7^3))=e^(i*π*7/10290) e^(i*π*(3/2+1/3-1/5+127/7^3))=e^(i*π*37/10290)
163 名前:132人目の素数さん mailto:sage [2023/07/14(金) 12:31:43.18 ID:1XN1Q0I4.net] 1/(2*3*5)の刻みにすることで変化量を減らす e^(i*π*(13/7+1/(2*3*5)))=e^(i*π*-23/750) e^(i*π*(13/7+7/(2*3*5)))=e^(i*π*19/750) e^(i*π*(13/7+11/(2*3*5)))=e^(i*π*47/750) e^(i*π*(13/7+13/(2*3*5)))=e^(i*π*61/750) e^(i*π*(13/7+17/(2*3*5)))=e^(i*π*89/750) e^(i*π*(21/11+11/(2*3*5*7)))=e^(i*π*-89/2310) e^(i*π*(21/11+13/(2*3*5*7)))=e^(i*π*-67/2310) e^(i*π*(21/11+17/(2*3*5*7)))=e^(i*π*-23/2310) e^(i*π*(21/11+19/(2*3*5*7)))=e^(i*π*-1/2310) e^(i*π*(21/11+23/(2*3*5*7)))=e^(i*π*43/2310) e^(i*π*(21/11+29/(2*3*5*7)))=e^(i*π*109/2310) e^(i*π*(21/11+31/(2*3*5*7)))=e^(i*π*131/2310) e^(i*π*(25/13+157/(2*3*5*7*11)))=e^(i*π*-269/30030) e^(i*π*(25/13+163/(2*3*5*7*11)))=e^(i*π*-191/30030) e^(i*π*(25/13+167/(2*3*5*7*11)))=e^(i*π*-139/30030) e^(i*π*(25/13+173/(2*3*5*7*11)))=e^(i*π*-61/30030) e^(i*π*(25/13+179/(2*3*5*7*11)))=e^(i*π*17/30030) e^(i*π*(25/13+181/(2*3*5*7*11)))=e^(i*π*43/30030) e^(i*π*(25/13+191/(2*3*5*7*11)))=e^(i*π*173/30030) e^(i*π*(25/13+193/(2*3*5*7*11)))=e^(i*π*199/30030) e^(i*π*(25/13+197/(2*3*5*7*11)))=e^(i*π*251/30030)
164 名前:132人目の素数さん [2023/07/15(土) 13:45:14.56 ID:VB180XqU.net] 長い式を書き並べている人は、どういった数式処理ソフトを使っているのだろうかなぁ?
165 名前:132人目の素数さん mailto:sage [2023/07/16(日) 21:06:57.29 ID:uLo9m6h8.net] >>164 cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+13^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(337/614889782588491410) cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+15^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(449/614889782588491410) cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+17^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(577/614889782588491410) cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+18^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(647/614889782588491410) cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+21^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(881/614889782588491410) cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+22^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(967/614889782588491410) cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+24^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(1151/614889782588491410) cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+25^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(1249/614889782588491410) Aに整数を入れて(floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+A^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2の分子が53^2より小さいとき素数になる cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+A^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)
166 名前:132人目の素数さん [2023/07/17(月) 12:59:43.63 ID:nXy+r9PE.net] おそらく、色んな人の言ってる素数の規則の有無って有効かつ単純な、P=n(f)の方程式の完成のこと言ってるよな。 単純な等比級数は倍数の世界で 櫛からも分かる通り素数は等比級数やひいては合成数の穴として素数が並べられているから "等比級数ではなさ"で成り立っている素数の並びをなんとか等比級数にしようと試みてることになる。 整数の世界からみたら、素数の並びは整数の規則のメス型なんだよな。 だから無限から数え下げようとか、ゼータ関数みたいな一次関数よりも複雑な関数が必要になる。
167 名前:132人目の素数さん [2023/07/18(火) 02:39:52.72 ID:2aiM4OLs.net] 値が正になるときには、すべての素数をしかも素数だけ表す多変数の多項式系というものは ずいぶん昔から知られているよ。
168 名前:132人目の素数さん [2023/07/19(水) 18:02:57.90 ID:lJxdL4Ez.net] >>167 k+2が素数のときに有効なやつな 規則が無いってのが倍数の規則の単純さの裏にあるとして考えたら おそらくみんな一次関数的な処理を目指してるんじゃないかと思って
169 名前:132人目の素数さん [2023/08/27(日) 15:28:59.27 ID:EQKFmvww.net] 素数の集合は自然数集合Nの部分集合であって、その任意の相異なる要素同士が互いに素である集合の例である。 そのような性質をもつNの部分集合として最大のものだろう。 そこで、「相異なる要素同士が互いに素である」という"関係"を 相異なる要素同士のなんらかの別の"関係"に置き換えることで、 自然数の集合Nの部分集合を(素数の集合の類似品として)作ることは可能か?
170 名前:132人目の素数さん mailto:sage [2023/09/07(木) 00:16:48.31 ID:zJAgvXPW.net] e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+2/5)/11^3))=e^((23 i π)/139755) e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+2/7)/11^3))=e^((47 i π)/139755) e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+4/7)/11^3))=e^(-(13 i π)/139755) floor((1/2+1/3+1/5+1/7)*11^n)+4/7)のときfloor((1/2+1/3+1/5+1/7)*11^n)+4/7)は素因数11をn個以上もたない e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^3)+8/11)/13^3))=e^((19 i π)/230685) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^3)+11/13)/17^3))=e^(-(1171 i π)/4339335) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^3)+22/13)/17^3))=e^(-(45317 i π)/73768695)
171 名前:132人目の素数さん mailto:sage [2023/09/10(日) 00:00:19.47 ID:dI5uwGku.net] cos(2pi*(1/2+1/3+1/5+1/7+1/11+a/13+b/17))>cos(2pi*(281/510510))を満たすとき aとbが同時に整数になることがないため cos(2pi*(1/2+1/3+1/5+1/7+1/11+a/13+b/17)) の分子が素数にならない(19より大きい素数の積になる可能性がある
172 名前:132人目の素数さん mailto:sage [2023/09/10(日) 00:28:54.66 ID:dI5uwGku.net] cos(2pi*(1/2+n/(3*5*7*11*13*17))) >cos(2pi*(19^2/510510)) 255255m+127447<n<255255m+127808 の範囲内で3,5,7,11,13,17で割れない整数を入れればcos(2pi*(1/2+n/(3*5*7*11*13*17))) の分子は素数 cos(2pi*(1/2+127487/(3*5*7*11*13*17)))=cos(2pi*(-19^2/510510)) cos(2pi*(1/2+127808/(3*5*7*11*13*17)))=cos(2pi*(19^2/510510)) ((1/3-1/5+1/7-1/11+1/13-1/17)*3*5*7*11*13*17)は3,5,7,11,13,17で割れない整数 255255m+127447<((1/3-1/5+1/7-1/11+1/13-1/17)*3*5*7*11*13*17)<255255m+127808のとき -278/935<m<-75533/255255のとき255255m+127447<n<255255m+127808の範囲内の整数nは3,5,7,11,13,17で割れない整数
173 名前:132人目の素数さん mailto:sage [2023/09/10(日) 20:11:28.51 ID:dI5uwGku.net] e^(i*2pi*(A/(2*3*5*7*11*13*17*19)-1/2))=e^(i*2pi*(B)/(3*6*7*11*13*17*19)) Aに素数を入れて出てくるBは3,5,7,11,13,17,19を素因数に持たない e^(i*2pi*(23/(2*3*5*7*11*13*19)-1/2))=e^(-i*2pi*(2424911)/(3*5*7*11*13*17*19)) e^(i*2pi*(1/2+2424911/(3*5*7*11*13*17)))=e^(-i*2pi*(23)/(2*3*5*7*11*13*17)) e^(i*2pi*(19/(2*3*5*7*11*13*17*19)-1/2))=e^(-i*2pi*(127627)/255255) e^(i*2pi*(1/2+127627/(3*5*7*11*13*17)))=e^(-i*2pi*(1)/(2*3*5*7*11*13*17)) e^(i*2pi*(17/(2*3*5*7*11*13*17*19)-1/2))=e^(-i*2pi*(142642)/285285) e^(i*2pi*(1/2+142642/(3*5*7*11*13*17)))=e^(i*2pi*(30029)/(2*3*5*7*11*13*17)) e^(i*2pi*(13/(2*3*5*7*11*13*17*19)-1/2))=e^(-i*2pi*(186532)/373065) e^(i*2pi*(1/2+186532/(3*5*7*11*13*17)))=e^(i*2pi*(117809)/(2*3*5*7*11*13*17))
174 名前:132人目の素数さん mailto:sage [2023/09/11(月) 01:16:13.16 ID:PGAOsNVR.net] cos(2pi*(1/2+n/(3*5*7*11*13))) >cos(2pi*(17^2/(2*3*5*7*11*13))) 15015 m + 7363<n<15015 m + 7652 √(A+B)=√(3*5*7*11*13) A-B=17^2 √(A-B)=17 A=7652 B=7363 √(A+B)*√(A^2-B^2)=3*5*7*11*13*17 √(A^2-B^2)/√(3*5*7*11*13)=17 y=√(((3*5*7*11*13)-x)^2-x^2)/√(3*5*7*11*13)=17 yとxが同時に整数になる時がx=7363、y=17のときのみなので素数17が求まる y=√((A-x)^2-x^2)/√(A) Aに3からn番目までの素数積をいれてxを増加させ格子点を求めることで素数になる
175 名前:132人目の素数さん [2023/09/12(火) 15:56:41.77 ID:L3Ppsu1Q.net] 素数は法則だから式では表せない
176 名前:132人目の素数さん mailto:sage [2023/09/16(土) 11:52:44.16 ID:PJtUNqdO.net] 素数を式で出すには定義から見つけないと無理だな虚数みたいに ((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31=3770006491/200560490130 ((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31-1/37=-61070249963/7420738134810 ((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31-1/37+1/41=4916857886327/304250263527210 4916857886327=1301*3779291227 4916857886327は2から41の素数で割れないものの43以上の素数の積になる可能性がある cos(2pi*(1/2+n/(3*5*7*11*13*17))) >cos(2pi*(19^2/510510)) 255255m+127447<((1/3-1/5+1/7-1/11+1/13-1/17)*3*5*7*11*13*17)<255255m+127808のとき -278/935<m<-75533/255255のとき255255m+127447<n<255255m+127808の範囲内の整数nは3,5,7,11,13,17で割れない整数 mが整数にならないので((1/3-1/5+1/7-1/11+1/13-1/17)*3*5*7*11*13*17)は3.5.7.11.13.17で割れないものの 255255m+127447<((1/3-1/5+1/7-1/11+1/13-1/17)*3*5*7*11*13*17)<255255m+127808は満たさない 255255m+121275537447<n<255255m+127808 かつnが3.5.7.11.13.17を素因数に持たない数 127553=229*557 cos(2pi*(1/2+127553/(3*5*7*11*13*17))) =cos((149 π)/255255) 127559=199*641 cos(2pi*(1/2+127559/(3*5*7*11*13*17)))=cos((137 π)/255255)
177 名前:132人目の素数さん mailto:sage [2023/09/16(土) 21:42:29.39 ID:PJtUNqdO.net] 255255m+127447<X=((1/3+n/(5*7*11*13*17))*3*5*7*11*13*17)<255255m+127808 255255 m + 127447<3 n + 85085<255255 m + 127808 42362/3<n<14241 cos(2pi*(1/2+X/(3*5*7*11*13*17))) e^(i*2pi*(1/2+((1/3+n/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) ←nが42362/3<n<14241のとき分子は素数になる e^(i*2pi*(1/2+((1/3+14130/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(61 i π)/51051) e^(i*2pi*(1/2+((1/3+14131/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(23 i π)/19635) e^(i*2pi*(1/2+((1/3+14132/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(293 i π)/255255) e^(i*2pi*(1/2+((1/3+14133/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(41 i π)/36465) e^(i*2pi*(1/2+((1/3+14134/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(281 i π)/255255) e^(i*2pi*(1/2+((1/3+14135/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(5 i π)/4641) e^(i*2pi*(1/2+((1/3+14136/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(269 i π)/255255) e^(i*2pi*(1/2+((1/3+14137/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(263 i π)/255255) e^(i*2pi*(1/2+((1/3+14138/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(257 i π)/255255) e^(i*2pi*(1/2+((1/3+14238/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^((49 i π)/36465) 14238が7を素因数にもつため分子が素数にならない e^(i*2pi*(1/2+((1/3+14239/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^((349 i π)/255255) e^(i*2pi*(1/2+((1/3+14240/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^((71 i π)/51051)
178 名前:132人目の素数さん mailto:sage [2023/09/16(土) 22:15:04.58 ID:PJtUNqdO.net] e^(i*2pi*(1/2+X1/(3*5))) cos(2pi*(1/2+((1/2+n/3)*(2*3))/(3*5)))>cos(2π*49/30)を満たすとき分子は素数 1/2 (15 m - 16)<n<5/2 (3 m - 1) e^(i*2pi*(1/2+(1/2+((1/2+n/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7))) cos(2pi*(1/2+(1/2+((1/2+n/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))>cos(2π*121/210)を満たすとき分子は素数 nが1/4 (105 m - 118)<n<1/4 (105 m - 29)をみたしかつ3または7の倍数でないとき分子が素数 e^(i*2pi*(1/2+(1/2+((1/2+n/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7))) e^(i*2pi*(1/2+(1/2+((1/2-8/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((83 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-10/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((67 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-11/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((59 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-13/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((43 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-14/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((35 i π)/105) ←非素数 e^(i*2pi*(1/2+(1/2+((1/2-16/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((19 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-17/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((11 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-19/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((5 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-20/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((-13 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-22/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((-29 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-23/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^((-37 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-25/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^(-(53 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-26/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^(-(61 i π)/105) e^(i*2pi*(1/2+(1/2+((1/2-28/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))=e^(-(77 i π)/105) ←非素数
179 名前:132人目の素数さん mailto:sage [2023/09/16(土) 23:51:32.96 ID:PJtUNqdO.net] e^(i*2pi*(1/2+(1/2+((1/2+(1/2+n/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) 1/8 (1155 m - 809)<n<5/8 (231 m - 128)を満たしかつ3の倍数でないとき分子が素数(非素数が混じる e^(i*2pi*(1/2+(1/2+((1/2+(1/2-82/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((137 i π)/1155) e^(i*2pi*(1/2+(1/2+((1/2+(1/2-83/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((121 i π)/1155) ←非素数 e^(i*2pi*(1/2+(1/2+((1/2+(1/2-85/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((89 i π)/1155) e^(i*2pi*(1/2+(1/2+((1/2+(1/2-86/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((73 i π)/1155) e^(i*2pi*(1/2+(1/2+((1/2+(1/2-88/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((41 i π)/1155) e^(i*2pi*(1/2+(1/2+((1/2+(1/2-89/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((25 i π)/1155) ←非素数 e^(i*2pi*(1/2+(1/2+((1/2+(1/2-91/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((-7 i π)/1155) e^(i*2pi*(1/2+(1/2+((1/2+(1/2-92/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((-23 i π)/1155) e^(i*2pi*(1/2+(1/2+((1/2+(1/2-94/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((-55 i π)/1155) e^(i*2pi*(1/2+(1/2+((1/2+(1/2-95/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((-71 i π)/1155) e^(i*2pi*(1/2+(1/2+((1/2+(1/2-97/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((-103 i π)/1155) e^(i*2pi*(1/2+(1/2+((1/2+(1/2-98/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((-119 i π)/1155) ←非素数 e^(i*2pi*(1/2+(1/2+((1/2+(1/2-100/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11)))=e^((-151 i π)/1155) e^(i*2pi*(1/2+(1/2+((1/2+(1/2-101/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11)))=e^((-167 i π)/1155)
180 名前:132人目の素数さん mailto:sage [2023/09/17(日) 00:19:58.42 ID:NvL18fxN.net] e^(2 i π (2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)) cos(2 π (2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)) < cos(2π*17^2/(2*3*5*7*11*13)) 1/16 (15015 m - 9101)<n<1/16 (15015 m - 8812) e^(2 i π (2/13(2/11 (2/7 (2/5 (-551/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((281 i π)/15015) e^(2 i π (2/13(2/11 (2/7 (2/5 (-553/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((217 i π)/15015) ←非素数 e^(2 i π (2/13(2/11 (2/7 (2/5 (-554/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((185 i π)/15015) ←非素数 e^(2 i π (2/13(2/11 (2/7 (2/5 (-556/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((121 i π)/15015) ←非素数 e^(2 i π (2/13(2/11 (2/7 (2/5 (-557/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((89 i π)/15015) e^(2 i π (2/13(2/11 (2/7 (2/5 (-559/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((25 i π)/15015) ←非素数 e^(2 i π (2/13(2/11 (2/7 (2/5 (-560/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((-7 i π)/15015) e^(2 i π (2/13(2/11 (2/7 (2/5 (-562/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((-71 i π)/15015) e^(2 i π (2/13(2/11 (2/7 (2/5 (-563/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((-103 i π)/15015) e^(2 i π (2/13(2/11 (2/7 (2/5 (-565/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((-167 i π)/15015) e^(2 i π (2/13(2/11 (2/7 (2/5 (-566/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((-199 i π)/15015) e^(2 i π (2/13(2/11 (2/7 (2/5 (-568/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((-263 i π)/15015)
181 名前:132人目の素数さん mailto:sage [2023/09/17(日) 00:45:26.83 ID:NvL18fxN.net] e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2)) cos(2 π (2/17(2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2)) >cos(2π*19^2/(210*11*13*17)) 1/32 (255255 m - 145721)<n<5/32 (51051 m - 29072) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3433/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((283 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (-4546/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((137 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3430/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((91 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (-4547/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((73 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3428/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((-37 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3427/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((-101 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3425/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((-229 i π)/255255)
182 名前:132人目の素数さん mailto:sage [2023/09/17(日) 00:49:51.30 ID:NvL18fxN.net] 連続する素数の差分は2^nと2^(n-1)が交互に来る 73 +2^4=89 89+2^3=97 97+2^4=113
183 名前:132人目の素数さん mailto:sage [2023/09/25(月) 18:20:08.09 ID:nXDkmK9h.net] ~~~-y( -)^^) ブチュッ
184 名前:132人目の素数さん mailto:sage [2023/10/13(金) 01:05:43.32 ID:mFgz5jJo.net] e^(i*2pi*(1-((1-n/(2*3))*2*3 mod 6)/(2*3*5))) e^(i*2pi*(1-(1-((1-n/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) e^(i*2pi*(1-(1-((1-5/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*7/105) e^(i*2pi*(1-(1-((1-7/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*5/105) e^(i*2pi*(1-(1-((1-11/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*7/105) e^(i*2pi*(1-(1-((1-13/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*5/105) e^(i*2pi*(1-(1-((1-17/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7)))=e^((i π)*7/105) e^(i*2pi*(1-(1-((1-19/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7)))=e^((i π)*5/105) e^(i*2pi*(1-(1-((1-23/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7)))=e^((i π)*7/105) e^(i*2pi*(1-(1-((1-25/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7)))=e^((i π)*5/105) e^(i*2pi*(1-(1-((1-29/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7)))=e^((i π)*7/105)
185 名前:132人目の素数さん mailto:sage [2023/10/22(日) 11:17:08.67 ID:1rLOY4nu.net] cos(2pi*(1-(1-(1-n/(2*3))*2*3)/(2*3)^5)) > cos(2pi*(25/(2*3)^5)) n = 7776 m, m element Z n = 27 (288 m + 1), m element Z n = 24 (324 m + 1), m element Z n = 18 (432 m + 1), m element Z n = 18 (432 m + 431), m element Z e^(i*2pi*(1-(1-(1-27/(2*3))*2*3)/(2*3)^5))=e^(-(11 i π)/1944) e^(i*2pi*(1-(1-(1-24/(2*3))*2*3)/(2*3)^5))=e^(-(19 i π)/3888) e^(i*2pi*(1-(1-(1-18/(2*3))*2*3)/(2*3)^5)) =e^(-(13 i π)/3888) e^(i*2pi*(1-(1-(1-18*431/(2*3))*2*3)/(2*3)^5)) =e^((23 i π)/3888)
186 名前:132人目の素数さん mailto:sage [2023/10/22(日) 11:32:49.01 ID:1rLOY4nu.net] cos(2pi*(1-((n+1/(2*3))*2*3)/(2*3)^3)) > cos(2pi*(25/(2*3)^3)) n = 36 m, m element Z n = 4 (9 m + 8), m element Z n = 3 (12 m + 1), m element Z n = 3 (12 m + 11), m element Z n = 2 (18 m + 1), m element Z e^(i*2pi*(1-((32+1/(2*3))*2*3)/(2*3)^3)) =e^((23 i π)/108) e^(i*2pi*(1-((3+1/(2*3))*2*3)/(2*3)^3)) =e^(-(19 i π)/108) e^(i*2pi*(1-((33+1/(2*3))*2*3)/(2*3)^3)) =e^((17 i π)/108) e^(i*2pi*(1-((2+1/(2*3))*2*3)/(2*3)^3)) =e^(-(13 i π)/108)
187 名前:132人目の素数さん mailto:sage [2023/10/22(日) 11:32:50.55 ID:1rLOY4nu.net] cos(2pi*(1-((n+1/(2*3))*2*3)/(2*3)^3)) > cos(2pi*(25/(2*3)^3)) n = 36 m, m element Z n = 4 (9 m + 8), m element Z n = 3 (12 m + 1), m element Z n = 3 (12 m + 11), m element Z n = 2 (18 m + 1), m element Z e^(i*2pi*(1-((32+1/(2*3))*2*3)/(2*3)^3)) =e^((23 i π)/108) e^(i*2pi*(1-((3+1/(2*3))*2*3)/(2*3)^3)) =e^(-(19 i π)/108) e^(i*2pi*(1-((33+1/(2*3))*2*3)/(2*3)^3)) =e^((17 i π)/108) e^(i*2pi*(1-((2+1/(2*3))*2*3)/(2*3)^3)) =e^(-(13 i π)/108)
188 名前:132人目の素数さん mailto:sage [2023/10/22(日) 11:35:52.73 ID:1rLOY4nu.net] cos(2pi*(1-((n+1/(2*3*5))*2*3*5)/(2*3*5)^3)) > cos(2pi*(49/(2*3*5)^3)) n = 900 m, m element Z n = 900 m + 1, m element Z n = 900 m + 899, m element Z e^(i*2pi*(1-((1+1/(2*3*5))*2*3*5)/(2*3*5)^3)) =e^(-(31 i π)/13500) e^(i*2pi*(1-((899+1/(2*3*5))*2*3*5)/(2*3*5)^3)) =e^((29 i π)/13500)
189 名前:132人目の素数さん mailto:sage [2023/10/22(日) 11:39:45.17 ID:1rLOY4nu.net] cos(2pi*(1-((n/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6)) > cos(2pi*(121/(2*3*5*7)^6)) n = 2858870700000 m, m element Z n = 4 (714717675000 m + 714717674999), m element Z n = 3 (952956900000 m + 1), m element Z n = 3 (952956900000 m + 1), m element Z n = 2 (1429435350000 m + 1), m element Z e^(i*2pi*(1-((4*714717674999/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^((113 i π)/42883060500000)
190 名前:132人目の素数さん mailto:sage [2023/10/22(日) 11:45:27.21 ID:1rLOY4nu.net] e^(i*2pi*(1-((3/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^(-(97 i π)/42883060500000) e^(i*2pi*(1-((2/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^(-(67 i π)/42883060500000) cos(2pi*(1-((n/(11*3)+1/(2*5*7))*2*3*5*7*11)/(2*3*5*7*11)^6)) > cos(2pi*(169/(2*3*5*7*11)^6)) n = 2170570215498300000 m, m element Z n = 2 (1085285107749150000 m + 1085285107749149999), m element Z n = 2170570215498300000 m + 1, m element Z n = 2170570215498300000 m + 2170570215498299999, m element Z e^(i*2pi*(1-((2*1085285107749149999/(11*3)+1/(2*5*7))*2*3*5*7*11)/(2*3*5*7*11)^6))=e^((107 i π)/75969957542440500000) e^(i*2pi*(1-((1/(11*3)+1/(2*5*7))*2*3*5*7*11)/(2*3*5*7*11)^6))=e^(-(103 i π)/75969957542440500000) e^(i*2pi*(1-((2170570215498299999/(11*3)+1/(2*5*7))*2*3*5*7*11)/(2*3*5*7*11)^6))=e^((37 i π)/75969957542440500000)
191 名前:132人目の素数さん mailto:sage [2023/10/22(日) 11:53:39.86 ID:1rLOY4nu.net] cos(2pi*(1-((n/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) > cos(2pi*(289/(2*3*5*7*11*13)^7)) n = 104874047791504330586247000000 m, m element Z n = 2 (52437023895752165293123500000 m + 52437023895752165293123499999), m element Z n = 104874047791504330586247000000 m + 104874047791504330586246999999, m element Z e^(i*2pi*(1-((52437023895752165293123499999/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) =e^((277 i π)/11011775018107954711555935000000) e^(i*2pi*(1-((104874047791504330586246999999/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) =e^((67 i π)/11011775018107954711555935000000)
192 名前:132人目の素数さん mailto:sage [2023/10/22(日) 11:58:27.77 ID:1rLOY4nu.net] cos(2pi*(1-((n/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) > cos(2pi*(289/(2*3*5*7*11*13)^7)) n = 98 (1070143344811268679451500000 m + 1070143344811268679451499999), m element Z n = 104874047791504330586247000000 m + 104874047791504330586246999903, m element Z e^(i*2pi*(1-((98*1070143344811268679451499999/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) =e^((131 i π)/11011775018107954711555935000000) e^(i*2pi*(1-((104874047791504330586246999903/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) =e^(-(79 i π)/11011775018107954711555935000000)
193 名前:132人目の素数さん mailto:sage [2023/10/22(日) 14:24:28.92 ID:1rLOY4nu.net] cos(2pi*(1-((n/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) > cos(2pi*(23^2/(2*3*5*7*11*13*17*19)^7)) n = 399 (96407937365467087673718025140163334691000000 m + 28140716575350032665769627724873739650774217), m element Z n = 8 (4808345876102670997726686503865646317713625000 m + 1403518239195582879205260182778077765082364073), m element Z n = 5 (7693353401764273596362698406185034108341800000 m + 2245629182712932606728416292444924424131782517), m element Z n = 2 (19233383504410683990906746015462585270854500000 m + 5614072956782331516821040731112311060329456291), m element Z n = 38466767008821367981813492030925170541709000000 m + 11228145913564663033642081462224622120658912581, m element Z e^(i*2pi*(1-((8*1403518239195582879205260182778077765082364073/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) =e^(-(229 i π)/4039010535926243638090416663247142906879445000000) e^(i*2pi*(1-((5*2245629182712932606728416292444924424131782517/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) =e^(-(439 i π)/4039010535926243638090416663247142906879445000000) e^(i*2pi*(1-((2*5614072956782331516821040731112311060329456291/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) =e^((191 i π)/4039010535926243638090416663247142906879445000000) e^(i*2pi*(1-((11228145913564663033642081462224622120658912581/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) =e^((401 i π)/4039010535926243638090416663247142906879445000000)
194 名前:132人目の素数さん mailto:sage [2023/10/22(日) 14:35:28.61 ID:1rLOY4nu.net] cos(2pi*(1-((n/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) > cos(2pi*(29^2/(2*3*5*7*11*13*17*19*23)^7)) n = 864 (151588688860480401830821308882900152330122196839031250 m + 57736288309081718076562795675036302431140590123061457), m element Z n = 350 (374207506215585906233798888213787804609215937339780000 m + 142526151711561726909000729894946758001444199618071711), m element Z n = 69 (1898154017035580683794632041664141037872834464767000000 m + 722958740565892817654351528452628482616021302410508679), m element Z n = 15 (8731508478363671145455307391655048774215038537928200000 m + 3325610206603106961210017030882091020033697991088339923), m element Z n = 4 (32743156793863766795457402718706432903306394517230750000 m + 12471038274761651104537563865807841325126367466581274711), m element Z e^(i*2pi*(1-((864*57736288309081718076562795675036302431140590123061457/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^(-(83 i π)/13752125853422782054092109141856701819388685697236915000000) e^(i*2pi*(1-((350*142526151711561726909000729894946758001444199618071711/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^(-(503 i π)/13752125853422782054092109141856701819388685697236915000000) e^(i*2pi*(1-((69*722958740565892817654351528452628482616021302410508679/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^(-(31 i π)/597918515366207915395309093124204426929942856401605000000) e^(i*2pi*(1-((15*3325610206603106961210017030882091020033697991088339923/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^((547 i π)/13752125853422782054092109141856701819388685697236915000000)
195 名前:132人目の素数さん mailto:sage [2023/10/22(日) 14:35:44.04 ID:1rLOY4nu.net] e^(i*2pi*(1-((4*12471038274761651104537563865807841325126367466581274711/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^((757 i π)/13752125853422782054092109141856701819388685697236915000000) P(k)がk番目の素数の時 cos(2pi*(1-((n/(11からP(k)の積)^11+1/(2*5*7*3))*2*3*5*7*(11からP(k)の積)^11)/(2からP(k)の積)^7)) > cos(2pi*(P(k+1)^2/(2からP(k)の積)^7)) をみたす整数nがあるとき e^(i*2pi*(1-((n/(11からP(k)の積)^11+1/(2*5*7*3))*2*3*5*7*(11からP(k)の積)^11)/(2からP(k)の積)^7)) の指数の分子はP(k+1)^2未満の素数
196 名前:132人目の素数さん [2023/10/29(日) 11:38:33.16 ID:MYhVftt0.net] 私からの挑戦状 君は、無事、素数の謎が解けるか 暗号 ノート 素数 0Σ 金とドイツ音楽家 解けても一週間は秘密で
197 名前:132人目の素数さん [2023/10/30(月) 08:46:18.43 ID:uOew3Zmo.net] 解けた人そこそこいるみたいですね 解けない人の為にヒント ノートは『場所』を示します
198 名前:132人目の素数さん [2023/10/30(月) 12:36:14.56 ID:uOew3Zmo.net] 解けた人がラストヒント出してるようですね 暗号の追加で 270
199 名前:132人目の素数さん mailto:sage [2023/11/18(土) 02:12:30.13 ID:ukn8BQQE.net] cos(2pi*(1-(((2n+1)/2^x-1/(3*5*7))*105*2^x)/(2*3*5*7)^3)) > cos(2pi*(11^2/210^3)) n = 44100 m n = 44100 m + 44099 e^(i*2pi*(1-(((2*44100+1)/2^3-1/(3*5*7))*210*2^2)/(2*3*5*7)^3))=e^(-(97 i π)/4630500) e^(i*2pi*(1-(((2*44100+1)/2^4-1/(3*5*7))*105*2^4)/(2*3*5*7)^3))=e^(-(89 i π)/4630500) e^(i*2pi*(1-(((2*44100+1)/2^5-1/(3*5*7))*105*2^5)/(2*3*5*7)^3))=e^(-(73 i π)/4630500) e^(i*2pi*(1-(((2*44100+1)/2^6-1/(3*5*7))*105*2^6)/(2*3*5*7)^3))=e^(-(41 i π)/4630500) e^(i*2pi*(1-(((2*44100+1)/2^7-1/(3*5*7))*105*2^7)/(2*3*5*7)^3))=e^((23 i π)/4630500) e^(i*2pi*(1-(((2*44099+1)/2^3-1/(3*5*7))*105*2^3)/(2*3*5*7)^3))=e^((113 i π)/4630500) e^(i*2pi*(1-(((2*44099+1)/2^2-1/(3*5*7))*105*2^2)/(2*3*5*7)^3))=e^((109 i π)/4630500) e^(i*2pi*(1-(((2*44099+1)/2^1-1/(3*5*7))*105*2^1)/(2*3*5*7)^3))=e^((107 i π)/4630500)
200 名前:132人目の素数さん mailto:sage [2023/11/26(日) 00:24:18.90 ID:5ylX1SN5.net] x^4 - 2 x^2 y^2 + 2 x^2 z^2 + y^4 + 2 y^2 z^2 + z^4=√((x+y)^2+z^2)^2*√((x-y)^2+z^2)^2*e^(i*arcsin(z/(x+y)))*e^(i*arcsin(-z/(x+y)))*e^(i*arcsin(+z/(x-y)))*e^(i*arcsin(-z/(x-y))) x^4 - 2 x^2 y^2 + 2 x^2 z^2 + y^4 + 2 y^2 z^2 + z^4=((x+y+i^(2n+1)*z)*(x+y-i^(2n+1)*z)*(x-y+i^(2n+1)*z)*(x-y-i^(2n+1)*z)) x^4 - 2 x^2 y^2 - 2 x^2 z^2 + y^4 - 2 y^2 z^2 + z^4=((x+y+z)*(x+y-z)*(x-y+z)*(x-y-z))*e^(i*arcsin(iz/(x+y)))*e^(i*arcsin(-iz/(x+y)))*e^(i*arcsin(+iz/(x-y)))*e^(i*arcsin(-iz/(x-y))) x^4 - 2 x^2 y^2 - 2 x^2 z^2 + y^4 - 2 y^2 z^2 + z^4=((x+y+i^2n*z)*(x+y-i^2n*z)*(x-y+i^2n*z)*(x-y-i^2n*z)) x^12 - 2 x^6 y^6 - 2 x^6 z^6 + y^12 - 2 y^6 z^6 + z^12=((x^3+y^3+i^2*z^3)*(x^3+y^3-i^2*z^3)*(x^3-y^3+i^2*z^3)*(x^3-y^3-i^2*z^3))=0 x^12 - 2 x^6 y^6 - 2 x^6 z^6 + y^12 - 2 y^6 z^6 + z^12≠0 cos(2pi*((2*a+1)/2^3-(3*b+1)/3^3-c/5^3-d/7^3)) > cos(2pi*(11^2/210^3)) a = 4 n_1, b = 9 n_2, c = 125 n_3 + 97, d = 343 n_4 + 107, cos(2pi*((2*4+1)/2^3-(3*9+1)/3^3-97/5^3-107/7^3)) =cos((89 π)/4630500) a = 4 n_1, b = 3 (3 n_2 + 1), c = 5 (25 n_3 + 22), d = 343 n_4 + 300, cos(2pi*((2*4+1)/2^3-(3*3+1)/3^3-110/5^3-300/7^3)) =cos((55 π)/4630500) ←110が5を持つため非素数 a = 4 n_1, b = 3 (3 n_2 + 2), c = 125 n_3 + 41, d = 343 n_4 + 32, cos(2pi*((2*3+1)/2^3-(3*6+1)/3^3-41/5^3-32/7^3)) =sin((17 π)/4630500) a = 4 n_1, b = 9 n_2 + 1, c = 125 n_3 + 31, d = 343 n_4 + 250, cos(2pi*((2*3+1)/2^3-(3*1+1)/3^3-31/5^3-250/7^3)) =-sin((103 π)/4630500) a = 4 n_1, b = 9 n_2 + 1, c = 125 n_3 + 74, d = 343 n_4 + 132, cos(2pi*((2*3+1)/2^3-(3*1+1)/3^3-74/5^3-132/7^3)) =sin((113 π)/4630500)
201 名前:132人目の素数さん mailto:sage [2023/11/26(日) 00:35:25.83 ID:5ylX1SN5.net] ↓3次元では書けないベクトル和(((x+y+i^m*z)*(x+y-i^m*z)*(x-y+i^m*z)*(x-y-i^m*z)) mが3以上のベクトル和をかけない) √(x^4 - 2 x^2 y^2 + 2 x^2 z^2 + y^4 + 2 y^2 z^2 + z^4)=√(((x+y+i^(2n+1)*z)*(x+y-i^(2n+1)*z)*(x-y+i^(2n+1)*z)*(x-y-i^(2n+1)*z))) √(x^4 - 2 x^2 y^2 - 2 x^2 z^2 + y^4 - 2 y^2 z^2 + z^4)=√(((x+y+i^2n*z)*(x+y-i^2n*z)*(x-y+i^2n*z)*(x-y-i^2n*z))) cos(2pi*((2*a+1)/2^3-(3*b+1)/3^3-c/5^3-d/7^3+e/11^3)) > cos(2pi*(13^2/2310^3)) a = 4 n_1, b = 9 n_2, c = 125 n_3, d = 343 n_4 + 83, e = 1331 n_5 + 205, a = 4 n_1, b = 9 n_2, c = 125 n_3 + 53, d = 7 (49 n_4 + 29), e = 1331 n_5 + 1235, cos(2pi*((2*4+1)/2^3-(3*9+1)/3^3-53/5^3-7*29/7^3+1235/11^3))=cos((91 π)/6163195500) ←7*29が7をもつため非素数 a = 4 n_1, b = 3 (3 n_2 + 1), c = 125 n_3 + 77, d = 343 n_4 + 163, e = 1331 n_5 + 448, cos(2pi*((2*4+1)/2^3-(3*3+1)/3^3-77/5^3-163/7^3+448/11^3))=cos((19 π)/6163195500) a = 4 n_1, b = 3 (3 n_2 + 2), c = 125 n_3 + 29, d = 343 n_4 + 243, e = 1331 n_5 + 691, cos(2pi*((2*4+1)/2^3-(3*6+1)/3^3-29/5^3-243/7^3+691/11^3))=cos((163 π)/6163195500) a = 4 n_1, b = 3 (3 n_2 + 2), c = 125 n_3 + 101, d = 343 n_4 + 123, e = 1331 n_5 + 992, cos(2pi*((2*4+1)/2^3-(3*6+1)/3^3-101/5^3-123/7^3+992/11^3))=cos((53 π)/6163195500)
202 名前:132人目の素数さん mailto:sage [2023/11/26(日) 00:48:12.61 ID:5ylX1SN5.net] cos(2pi*((2*a+1)/2^3-(3*b+2)/3^3-c/5^3-d/7^3+e/11^3+f/13)) > cos(2pi*(17^2/(2310)^3*1/13)) a = 4 n_1, b = 9 n_2, c = 5 (25 n_3 + 11), d = 343 n_4 + 114, e = 1331 n_5 + 1165, f = 13 n_6 + 11, a = 4 n_1, b = 9 n_2, c = 125 n_3 + 11, d = 343 n_4 + 176, e = 1331 n_5 + 118, f = 13 n_6 + 6, cos(2pi*((2*4+1)/2^3-(3*9+2)/3^3-11/5^3-176/7^3+118/11^3+6/13)) =cos((71 π)/80121541500) a = 4 n_1, b = 9 n_2, c = 125 n_3 + 92, d = 7 (49 n_4 + 34), e = 1331 n_5 + 402, f = 13 n_6 + 1, a = 4 n_1, b = 3 (3 n_2 + 1), c = 5 (25 n_3 + 13), d = 343 n_4 + 103, e = 1331 n_5 + 751, f = 13 n_6 + 7, a = 4 n_1, b = 3 (3 n_2 + 1), c = 125 n_3 + 28, d = 7 (49 n_4 + 46), e = 1331 n_5 + 183, f = 13 n_6 + 4,
203 名前:132人目の素数さん mailto:sage [2023/12/03(日) 00:59:14.54 ID:ytu0Oj+u.net] cos(2pi*((n1/2+1)/2^n+(n2/3+1)/3^n+(n3/5+1)/5^n+(n4/7+1)/7^n)) > cos(2pi*(11^2/(2*3*5*7)^n)) これを満たす整数n,n1,n2,n3,n4が存在するとき e^(i*2pi*((n1/2+1)/2^n+(n2/3+1)/3^n+(n3/5+1)/5^n+(n4/7+1)/7^n))=e^(i*2pi*(X/(2*3*5*7)^n)) のXが素数になる
204 名前:132人目の素数さん mailto:sage [2023/12/03(日) 01:11:00.11 ID:ytu0Oj+u.net] cos(2pi*((n1/2+1)/2^n+(n2/3+1)/3^n+(n3/5+1)/5^n+(n4/7+1)/7^n)) > cos(2pi*(11^2/(2*3*5*7)^(n+1))) これを満たす整数n,n1,n2,n3,n4が存在するとき e^(i*2pi*((n1/2+1)/2^n+(n2/3+1)/3^n+(n3/5+1)/5^n+(n4/7+1)/7^n))=e^(i*2pi*(X/(2*3*5*7)^(n+1))) のXが素数になる cos(2pi*((1/2+1)/2^2+(2/3+1)/3^2+(a/5+1)/5^2+(b/7+1)/7^2)) > cos(2pi*(11^2/(2*3*5*7)^3)) a = 125 n_1 + 19, b = 343 n_2 + 78, n_1 element Z, n_2 element Z e^(i*2pi*((1/2+1)/2^2+(2/3+1)/3^2+(19/5+1)/5^2+(78/7+1)/7^2))=e^(-(13 i π)/4630500)
205 名前:132人目の素数さん mailto:sage [2023/12/03(日) 01:14:04.46 ID:ytu0Oj+u.net] cos(2pi*((1/2+1)/2^2+(2/3+1)/3^2+(a/5+1)/5^2+(b/7+1)/7^2+(c/11+1)/11^2)) > cos(2pi*(13^2/(2*3*5*7*11)^3)) a = 125 n_1 + 29, b = 343 n_2 + 82, c = 1331 n_3 + 1198, n_1 element Z, n_2 element Z, n_3 element Z e^(i*2pi*((1/2+1)/2^2+(2/3+1)/3^2+(29/5+1)/5^2+(82/7+1)/7^2+(1198/11+1)/11^2))=e^(-(23 i π)/6163195500)
206 名前:132人目の素数さん mailto:sage [2023/12/03(日) 01:48:41.93 ID:ytu0Oj+u.net] cos(2pi*((7/2+1)/2^3+(29/3+1)/3^3+(a/5+1)/5^3+(b/7+1)/7^3)) > cos(2pi*(11^2/(2*3*5*7)^4)) a = 625 n_1 + 204, b = 2401 n_2 + 1693, n_1 element Z, n_2 element Z e^(i*2pi*((7/2+1)/2^3+(29/3+1)/3^3+(204/5+1)/5^3+(1693/7+1)/7^3)) =e^((89 i π)/972405000)
207 名前:132人目の素数さん mailto:sage [2023/12/03(日) 01:50:48.75 ID:ytu0Oj+u.net] cos(2pi*((5/2+1)/2^3+(29/3+1)/3^3+(a/5+1)/5^3+(b/7+1)/7^3)) > cos(2pi*(11^2/(2*3*5*7)^4)) a = 625 n_1 + 582, b = 2401 n_2 + 541, n_1 element Z, n_2 element Z e^(i*2pi*((5/2+1)/2^3+(29/3+1)/3^3+(582/5+1)/5^3+(541/7+1)/7^3)) =e^(-(73 i π)/972405000)
208 名前:132人目の素数さん mailto:sage [2023/12/03(日) 13:26:01.77 ID:ytu0Oj+u.net] |L|=X+Y+Z=√((√x+√y+i*√z)*(√x-√y+i*√z)*(√x+√y-i*√z)*(√x-√y-i*√z)) |L|=X+Y+Z=√((√x+√y+i*√z)*(√x-√y+i*√z)*(√x+√y-i*√z)*(√x-√y-i*√z)) |L|=√(x^2+y^2+z^2+2*(x*y*cos(0)+x*z*cos(0)+y*z*cos(π))) |L|=0 √x=√y+i*√z、-√y+i*√z、√y-i*√z、-√y-i*√z |L|=X+Y+Z=√((√x+√y+i^2*√z)*(√x-√y+i^2*√z)*(√x+√y-i^2*√z)*(√x-√y-i^2*√z)) |L|=√(x^2+y^2+z^2+2*(x*y*cos(π)+x*z*cos(π)+y*z*cos(π))) |L|=0 √x=√y+i^2*√z、-√y+i^2*√z、√y-i^2*√z、-√y-i^2*√z |L|=X+Y+Z=√((x-y+z)*(x-y+z)) |L|=√(x^2+y^2+z^2+2*(x*y*cos(π)+x*z*cos(0)+y*z*cos(π))) |L|=0 x=±√(y^2-z^2)
209 名前:132人目の素数さん mailto:sage [2023/12/03(日) 16:41:24.07 ID:ytu0Oj+u.net] a^n+b^n≠c^n 1/a^n+1/b^n≠c^n/(ab)^n cos(2pi*(1/a^n+1/b^n)) > cos(2pi*(c^n/(ab)^n)) cos(2pi*(1/2^3+1/(3*5)^3)) > cos(2pi*(c^3/(2*3*5)^3)) (-0.5 + 0.866025 i) (27000 n + 3383)^(1/3)<c<(-0.5 + 0.866025 i) (27000 n + 23617)^(1/3), n element Z cos(2pi*(1/(2*7)^4+1/(3*5)^4)) > cos(2pi*(c^3/(2*3*5*7)^4)) (-0.5 + 0.866025 i) (1944810000 n + 89041)^(1/3)<c<(-0.5 + 0.866025 i) (1944810000 n + 1944720959)^(1/3), n element Z
210 名前:132人目の素数さん mailto:sage [2023/12/03(日) 19:40:19.07 ID:ytu0Oj+u.net] cos(2pi*(1/2^3+1/(3*5)^3)) =cos(2pi*(c^3/(2*3*5)^3)) c = 27000 n + 1127, n element Z c = 27000 n + 7873, n element Z c = 27000 n + 10127, n element Z c = 27000 n + 19127, n element Z c = 27000 n + 25873, n element Z 1127^3 mod 27000 =3383 =2^3+15^3 7873^3 mod 27000 =23617=27000-2^3-15^3 7873=素数 10127^3 mod 27000 =3383 =2^3+15^3 19127^3 mod 27000 =3383 =2^3+15^3 25873^3 mod 27000 =23617=27000-2^3-15^3 25873=素数
211 名前:132人目の素数さん mailto:sage [2023/12/03(日) 19:56:45.16 ID:ytu0Oj+u.net] cos(2pi*(1/2^4+1/(3*5*7)^4)) =cos(2pi*(c^4/(2*3*5*7)^4)) c = 1944810000 n + 5250989, n element Z c = 1944810000 n + 11474377, n element Z c = 1944810000 n + 19508123, n element Z c = 1944810000 n + 36233489, n element Z c = 1944810000 n + 90568123, n element Z c = 1944810000 n + 104825261, n element Z c = 1944810000 n + 107293489, n element Z c = 1944810000 n + 121550623, n element Z c = 1944810000 n + 121550627, n element Z c = 1944810000 n + 135807761, n element Z c = 1944810000 n + 138275989, n element Z c = 1944810000 n + 152533127, n element Z c = 1944810000 n + 206867761, n element Z c = 1944810000 n + 223593127, n element Z c = 1944810000 n + 231626873, n element Z 5250989^4 mod 1944810000 =121550641=(3*5*7)^4+2^4 5250989=素数 11474377^4 mod 1944810000 =121550641=(3*5*7)^4+2^4 11474377=素数 19508123^4 mod 1944810000 =121550641=(3*5*7)^4+2^4 19508123=非素数 36233489^4 mod 1944810000 =121550641=(3*5*7)^4+2^4 90568123^4 mod 1944810000 =121550641=(3*5*7)^4+2^4 104825261^4 mod 1944810000 =121550641=(3*5*7)^4+2^4
212 名前:132人目の素数さん mailto:sage [2023/12/10(日) 22:50:09.85 ID:ASmhxKZP.net] 素数aがある 1≦X≦a^nの範囲でaを素因数に持つものと持たないものに分ける aを素因数に持つ個数=(a^(n-1)) aを素因数に持たない個数=(a^n-a^(n-1))=(1-1/a)*(1+1/1!*(n*ln(n))+1/2!*(n*ln(n))^2+1/3!*(n*ln(n))^3+・・・)=(1-1/a)*Σ(n*ln(a))^k/k!=(1-1/a)*e^(n*ln(a)) a^n以下でaを素因数を持たない個数を小さいほうの素数から順番にかける Π(1-1/a)*e^(n*ln(a))=(1-1/2)*e^(n*ln(2))*(1-1/3)*e^(n*ln(3))*(1-1/5)*e^(n*ln(5))*・・・*(1-1/m)*e^(n*ln(m))=(1-1/2)*(1-1/3)*・・・(1-1/m)*e^(n*(ln(2)+ln(3)+ln(5)+・・・+ln(m))) Π(1-1/a)*e^(n*ln(a))=1/ζ(1)*e^(n*(ln(2)+ln(3)+ln(5)+・・・+ln(m))) (A/2^n+B/3^n+C/5^n)*(2*3*5)^n mod (2*3*5)^nは 1≦X≦(2*3*5)^nを満たす全てのXを表現できる この中にΠ(1-1/a)*e^(n*ln(a))=1/ζ(1)*e^(n*(ln(2)+ln(3)+ln(5)+・・・+ln(m)))個の2,3,5を素因数に持たない整数を持つ この中に7より大きい素数の積になっている数が混じっている
213 名前:132人目の素数さん mailto:sage [2023/12/11(月) 18:40:31.76 ID:DDn3hfvp.net] ((a^(n-1))+(a^n-a^(n-1)))*((b^(n-1))+(b^n-b^(n-1))) aとbを素因数にもつ個数=(a^(n-1))*(b^(n-1)) bのみを素因数にもつ個数=(a^n-a^(n-1))*(b^(n-1)) aのみを素因数にもつ個数=(b^n-b^(n-1))*(a^(n-1)) aとbを素因数にもたない個数=(a^n-a^(n-1))*(b^n-b^(n-1)) (2*3)^2 aとbを素因数にもつ個数=6,12,18,24,30,36 3のみを素因数にもつ個数=3,9,15,21,27,33 2のみを素因数にもつ個数=2,4,8,10,14,16,20,22,26,28,32,34 2と3を素因数に持たない個数=1,5,7,11,13,17,19,23,25,29,31,35=(2^2-2)*(3^2-3)=12個
214 名前:132人目の素数さん mailto:sage [2023/12/11(月) 19:11:10.42 ID:DDn3hfvp.net] cos(2pi*(7^2/(2*3*5)^2))>cos(2pi*((2*a+1)/2^2+(3*b+1)/3^2+(5*c+1)/5^2)) > cos(2pi*(7*11/(2*3*5)^2)) a = 2 n_1, b = 3 n_2 + 1, c = 5 n_3 + 1, n_1 element Z, n_2 element Z, n_3 element Z a = 2 n_1, b = 3 n_2 + 2, c = 5 n_3, n_1 element Z, n_2 element Z, n_3 element Z e^(i*2pi*((2*2+1)/2^2+(3*1+1)/3^2+(5*1+1)/5^2))=e^(i*2pi*(-59 )/(2*3*5)^2) ←2,3,5で割れなくて7^2より大きく7*11より小さい数のため素数 e^(i*2pi*((2*2+1)/2^2+(3*2+1)/3^2+(5*5+1)/5^2))=e^(i*2pi*(61)/(2*3*5)^2) ←2,3,5で割れなくて7^2より大きく7*11より小さい数のため素数
215 名前:132人目の素数さん mailto:sage [2023/12/12(火) 21:36:09.21 ID:mrhhK5hW.net] cos(2pi*(11^2/(2*3*5*7)^2))>cos(2pi*((2*a+1)/2^2+(3*b+1)/3^2+(5*c+1)/5^2+(d)/7^2)) > cos(2pi*(13*11/(2*3*5*7)^2)) a = 2 n_1, b = 3 n_2, c = 5 n_3 + 4, d = 49 n_4 + 39, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z a = 2 n_1 + 1, b = 3 n_2, c = 5 n_3, d = 49 n_4 + 5, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z cos(2pi*((2*2+1)/2^2+(3*3+1)/3^2+(5*4+1)/5^2+(39)/7^2)) =cos((131 π)/22050) cos(2pi*((2*1+1)/2^2+(3*3+1)/3^2+(5*5+1)/5^2+(5)/7^2)) =cos((139 π)/22050)
216 名前:132人目の素数さん mailto:sage [2023/12/12(火) 22:56:09.41 ID:mrhhK5hW.net] cos(2pi*(11^2/(2*3*5*7)^2))>cos(2pi*((2*a+1)/2^2+(3*b+2)/3^2+(5*c+4)/5^2+(d)/7^2)) > cos(2pi*(13*11/(2*3*5*7)^2)) a = 2 n_1, b = 3 n_2 + 2, c = 5 n_3 + 4, d = 49 n_4 + 44, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z a = 2 n_1 + 1, b = 3 n_2 + 2, c = 5 n_3, d = 49 n_4 + 10, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z e^(i*2pi*((2*2+1)/2^2+(3*2+1)/3^2+(5*4+1)/5^2+(44)/7^2)) =e^(-(10331 i π)/22050) e^(i*2pi*((2*1+1)/2^2+(3*2+1)/3^2+(5*5+1)/5^2+(10)/7^2)) =e^(-(10061 i π)/22050)
217 名前:132人目の素数さん mailto:sage [2023/12/12(火) 23:54:25.84 ID:mrhhK5hW.net] e^(i*2pi*((2*2^n+1)/2^2+(3*2^n+2)/3^2+(5*2^n+4)/5^2+(7*2^n+8)/7^2)) e^(i*2pi*((2*2^1+1)/2^2+(3*2^1+2)/3^2+(5*2^1+4)/5^2+(7*2^1+8)/7^2))=e^(-(1249 i π)/22050) e^(i*2pi*((2*2+1)/2^2+(3*2+2)/3^2+(5*2+4)/5^2+(7*2+8)/7^2))=e^((6521 i π)/22050) e^(i*2pi*((2*4+1)/2^2+(3*4+2)/3^2+(5*4+4)/5^2+(7*4+8)/7^2))=e^(-(22039 i π)/22050) e^(i*2pi*((2*8+1)/2^2+(3*8+2)/3^2+(5*8+4)/5^2+(7*8+8)/7^2))=e^((9041 i π)/22050)
218 名前:132人目の素数さん mailto:sage [2023/12/13(水) 00:01:00.92 ID:8cxE3ENL.net] e^(i*2pi*((2*3+1)/2^2+(3*3+2)/3^2+(5*3+4)/5^2+(7*3+8)/7^2+(11*3+16)/11^2))=e^(-(1445989 i π)/2668050) e^(i*2pi*((2*9+1)/2^2+(3*9+2)/3^2+(5*9+4)/5^2+(7*9+8)/7^2+(11*9+16)/11^2))=e^((1769531 i π)/2668050) e^(i*2pi*((2*27+1)/2^2+(3*27+2)/3^2+(5*27+4)/5^2+(7*27+8)/7^2+(11*27+16)/11^2))=e^((743891 i π)/2668050)
219 名前:132人目の素数さん mailto:sage [2023/12/13(水) 19:15:06.24 ID:8cxE3ENL.net] ((a^(n-1))+(a^n-a^(n-1)))*((b^(n-1))+(b^n-b^(n-1)))*((c^(n-1))+(c^n-c^(n-1))) aとbとcを素因数にもつ個数=(a^(n-1))*(b^(n-1))*(c^(n-1)) aとbとcを素因数にもたない個数=(a^n-a^(n-1))*(b^n-b^(n-1))*(c^n-c^(n-1)) 1から(1からn番目の素数の積)^nの間の素数の個数=Π(P(k)^n-P(k)^(n-1)) - (n+1番目以上の素数の積の個数)
220 名前:132人目の素数さん mailto:sage [2023/12/13(水) 19:18:34.99 ID:8cxE3ENL.net] 1から(1からn番目の素数の積)^nの間の素数の個数=Π(P(k)^n-P(k)^(n-1)) - (n+1番目以上の素数の積の個数)+(n-1) (n+1番目以上の素数の積の個数)=P(n+1)^2、P(n+1)*P(n+2)、P(n+2)^2、P(n+1)*P(n+3)、・・・
221 名前:132人目の素数さん mailto:sage [2023/12/17(日) 01:50:55.27 ID:4J99V8IV.net] 1から(1からn番目の素数の積)^(n+1)の間の素数の個数=Π(P(k)^(n+1)-P(k)^(n)) - (n+1番目以上の素数の積の個数)+(n-1) 1から(1からn番目の素数の積)^nの間の素数の個数=Π(P(k)^n-P(k)^(n-1)) - (n+1番目以上の素数の積の個数)+(n-1) 18*4 6*2 (1からn番目の素数の積)^nから(1からn番目の素数の積)^(n+1)の間の素数の個数=Π(P(k)^n-P(k)^(n-1))*(ΠP(k)-1) - (n+1番目以上の素数の積の個数)[(1からn番目の素数の積)^nから(1からn番目の素数の積)^(n+1)の間]+1 (2*3)^2から(2*3)^3の間の素数の個数=(2^2-2^1)*(3^2-3^1)*(3*2-1)-(n+1番目以上の素数の積の個数)[(1からn番目の素数の積)^nから(1からn番目の素数の積)^(n+1)の間] (2*3)^2から(2*3)^3の間の素数の個数=60-(n+1番目以上の素数の積の個数)[(1からn番目の素数の積)^nから(1からn番目の素数の積)^(n+1)の間]=36個 合成数(5以上の素数の積)24個=49,55,65,77,85,91,95,115,119,121,125,133,143,145,155,161,169,175,185,187,203,205,209,215 素数(36個)=37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211
222 名前:132人目の素数さん mailto:sage [2023/12/17(日) 02:04:31.89 ID:4J99V8IV.net] 1から(2*3*5)^2の間の素数の個数=(2^2-2)*(3^2-3)*(5^2-5)- (7以上の素数の積の個数)+(3-1)=240個-(7以上の素数の合成数の個数(1から900の間))+2=154個 素数(154個)=2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 1から(2*3*5*7)^2の間の素数の個数=(2^2-2)*(3^2-3)*(5^2-5)*(7^2-7)- (11以上の素数の積の個数)+(4-1)
223 名前:132人目の素数さん mailto:sage [2023/12/17(日) 02:21:14.90 ID:4J99V8IV.net] 1から(2*3*5*7)^2の間の素数の個数=(2^2-2)*(3^2-3)*(5^2-5)*(7^2-7)- (11以上の素数の積の個数)+(4-1) 1から(2*3*5)^2の間の素数の個数=(2^2-2)*(3^2-3)*(5^2-5)- (7以上の素数の積の個数)+(3-1) (2*3*5)^2から(2*3*5*7)^2の間の素数の個数=(2^2-2)*(3^2-3)*(5^2-5)*((7^2-7)-1)- (11以上の素数でできた合成数の個数[1から(2*3*5*7)^2の間])+(7以上の素数でできた合成数の個数[1から(2*3*5)^2の間])+1
224 名前:132人目の素数さん mailto:sage [2023/12/17(日) 12:15:08.93 ID:4J99V8IV.net] 1から(11*13*17*19)^2の間の合成数(素因数11,13,17,19のみ)の個数=11^(n-1)*13^(n-1)*17^(n-1)*19^(n-1) 1から(2*3)^3の間の合成数(素因数11,13,17,19のみ)の個数=121,143,169,187,209,=5個
225 名前:132人目の素数さん mailto:sage [2023/12/18(月) 20:19:35.76 ID:G1nocuy9.net] cos(2pi*(7^2/(2*3*5)^2))>cos(2pi*((2*a+1)/2^2+(3*b+1)/3^2+(5*c+1)/5^2)) > cos(2pi*(7*11/(2*3*5)^2)) a = 2 n_1, b = 3 n_2 + 1, c = 5 n_3 + 1, n_1 element Z, n_2 element Z, n_3 element Z a = 2 n_1, b = 3 n_2 + 2, c = 5 n_3, n_1 element Z, n_2 element Z, n_3 element Z e^(i*2pi*((2*2+1)/2^2+(3*1+1)/3^2+(5*1+1)/5^2))=e^(i*2pi*(-59 )/(2*3*5)^2) ←2,3,5で割れなくて7^2より大きく7*11より小さい数のため素数 e^(i*2pi*((2*2+1)/2^2+(3*2+1)/3^2+(5*5+1)/5^2))=e^(i*2pi*(61)/(2*3*5)^2) ←2,3,5で割れなくて7^2より大きく7*11より小さい数のため素数 1>cos(2pi*(-59+30n)/(2*3*5)^2)>cos(2pi*(7^2/(2*3*5)^2))を満たすとき|-59+30n|=19,29,31は素数 1>cos(2pi*(61+30n)/(2*3*5)^2)>cos(2pi*(7^2/(2*3*5)^2))を満たすとき|61+30n|=31,29は素数
226 名前:132人目の素数さん mailto:sage [2023/12/18(月) 20:28:00.78 ID:G1nocuy9.net] cos(2pi*(11^2/(2*3*5*7)^2))>cos(2pi*((2*a+1)/2^2+(3*b+2)/3^2+(c)/5^2+(d)/7^2)) > cos(2pi*(11*13/(2*3*5*7)^2)) a = 2 n_1, b = 3 n_2, c = 25 n_3, d = 49 n_4 + 26, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z a = 2 n_1, b = 3 n_2, c = 25 n_3 + 7, d = 49 n_4 + 12, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z a = 2 n_1, b = 3 n_2 + 1, c = 25 n_3 + 8, d = 49 n_4 + 43, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z a = 2 n_1, b = 3 n_2 + 2, c = 25 n_3 + 24, d = 49 n_4 + 44, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z a = 2 n_1 + 1, b = 3 n_2 + 1, c = 25 n_3 + 3, d = 7 (7 n_4 + 4), n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z e^(i*2pi*((2*2+1)/2^2+(3*3+2)/3^2+(7)/5^2+(12)/7^2))=e^(-(127 i π)/22050) e^(i*2pi*((2*2+1)/2^2+(3*1+2)/3^2+(8)/5^2+(43)/7^2))=e^((137 i π)/22050) 1>e^(i*2pi*-(127 +(2*3*5*7)n)/(2*3*5*7)^2)>cos(2pi*(11^2/(2*3*5*7)^2))を満たすとき|-127+210n|=83は素数 1>e^(i*2pi*(137 +(2*3*5*7)n)/(2*3*5*7)^2)>cos(2pi*(11^2/(2*3*5*7)^2))を満たすとき|137+210n|=73は素数
227 名前:132人目の素数さん mailto:sage [2023/12/19(火) 02:49:02.20 ID:4b3AtVzj.net] P(k)=k番目の素数 1≦k≦m cの素数の個数=Π(P(k)^n-P(k)^(n-1))- (P(m+1)以上の素数の合成数の個数)+(m-1) 1から(ΠP(k))^nの間の素数の個数=X個 1から(ΠP(k))^nの間の最大の素数=P(X) X=Π(P(k)^n-P(k)^(n-1))- (P(m+1)以上P(X)以下の素数の合成数の個数)+(m-1) (P(m+1)以上P(X)以下の素数の合成数の個数[1から(ΠP(k))^nの間])=(Π(P(k)^n-P(k)^(n-1))-X+(m-1))個
228 名前:132人目の素数さん mailto:sage [2023/12/21(木) 00:15:19.28 ID:KHL6UQJ4.net] F(X:m)=1から(ΠP(k))^nの間の素数の個数[1≦k≦m] (P(m+2)以上P(X)以下の素数の合成数の個数[1から(ΠP(k))^nの間(1≦k≦m+1のとき)])+F(X:m+1)+m=(Π(P(k)^n-P(k)^(n-1)) 1≦k≦m+1のとき (P(m+1)以上P(X)以下の素数の合成数の個数[1から(ΠP(k))^nの間(1≦k≦mのとき)])+F(X:m)-(m-1)=(Π(P(k)^n-P(k)^(n-1)) 1≦k≦mのとき ((P(m+2)以上P(X)以下の素数の合成数の個数[1から(ΠP(k))^nの間(1≦k≦m+1のとき)])+F(X:m+1)+m)/ ((P(m+1)以上P(X)以下の素数の合成数の個数[1から(ΠP(k))^nの間(1≦k≦mのとき)])+F(X:m)-(m-1))=(P(m+1)^n-P(m+1)^(n-1)) (P(A)^2-P(A)^(1))+(P(B)^2-P(B)^(1))=(P(C)^2-P(C)^(1)) (4^2-4)+(3^2-3)=(5^2-7)=18 (12^2-12)+(5^2-5)=(13^2-17)=152 ピタゴラス数の小さい2個の数の和は7で割れる数か素数になる 5 4 3 4+3=7 13 12 5 12+5=17 17 15 8 15+8=23 25 24 7 29 21 20 37 35 12 41 40 9 49=7^2 53 45 28 61 60 11 71 65 56 33 65 63 16 97 72 65 101 99 20 119=7*17 109 91 60 157 132 85 169 120 119 239 173 165 52 181 180 19 185 153 104 257 185 176 57 205 156 133 205 187 84 221 171 140 221 220 21 241 229 221 60 277 252 115 281 231 160 289 240 161 293 285 68 353 305 224 207 305 273 136
229 名前:132人目の素数さん mailto:sage [2023/12/21(木) 00:27:29.02 ID:KHL6UQJ4.net] ピタゴラス数の小さい2個の数の和は順番に並べるとき 最初のほうに出てきた数が後に出てくる数の素因数になる 8245 6396 5203 10897=17*641 ←13 12 5 12+5=17で17が出ているため素因数にもつ
230 名前:132人目の素数さん mailto:sage [2023/12/21(木) 00:29:55.43 ID:KHL6UQJ4.net] 9953^2=9928^2+705^2 9953 9928 705 10663=7^3*31 ←5 4 3 4+3=7 25^2=24^2+7^2 25 24+7=31で素因数7と31がでているため素因数にもつ
231 名前:132人目の素数さん mailto:sage [2023/12/21(木) 22:26:41.00 ID:KHL6UQJ4.net] (a,b,c)=(m^2-n^2、2*mn、m^2+n^2) (m"^2-n"^2)+2*(m"n")=((m'^2-n'^2)+2*(m'n'))^k*((m^2-n^2)+2*(mn))^l ←左のようになる組み合わせがある a b c m n 1番目 3 4 5 2 1 2番目 5 12 13 3 2 3番目 7 24 25 4 3 24+25=7^2 4番目 8 15 17 4 1 2*(151+17)=8^2 5番目 9 40 41 5 4 40+41=9^2 6番目 11 60 61 6 5 60+61=11^2 7番目 12 35 37 6 1 2*(35+37)=12^2 8番目 13 84 85 7 6 84+85=13^2 9番目 15 112 113 8 7 112+113=15^2 10番目 16 63 65 8 1 2*(63+65)=16^2 11番目 17 144 145 9 8 144+145=17^2 12番目 19 180 181 10 9 180+181=19^2 13番目 20 21 29 5 2 2^3*(21+29)=20^2 14番目 20 99 101 10 1 2*(99+101)=20^2 15番目 21 220 221 11 10 220+221=21^2 16番目 23 264 265 12 11 264+265=23^2
232 名前:132人目の素数さん mailto:sage [2023/12/21(木) 22:43:24.86 ID:KHL6UQJ4.net] ピタゴラス数を満たすm,nは下記のいずれかになる(kは任意の整数) 2^k*(m*n)*(1+(m*n))=m^2*(m-1)*(m+1)+n^2*(n-1)*(n+1)
233 名前:132人目の素数さん mailto:sage [2023/12/21(木) 22:51:53.20 ID:KHL6UQJ4.net] 2^k*(2*mn+m^2+n^2)=(m^2-n^2)^2 ピタゴラス数を満たすm,nは下記になる(kは任意の整数) 2^k*(mn)*(2^k-(mn))=(m^4-2^k*m^2)+(n^4-2^k*n^2)
234 名前:132人目の素数さん mailto:sage [2023/12/21(木) 22:52:42.17 ID:KHL6UQJ4.net] ピタゴラス数を満たすm,nは下記になる(kは任意の整数) 2*(mn)*(2^k-(mn))=(m^4-2^k*m^2)+(n^4-2^k*n^2)
235 名前:132人目の素数さん mailto:sage [2023/12/21(木) 22:58:05.15 ID:KHL6UQJ4.net] ピタゴラス数を満たすm,nは下記のいずれかになる(kは任意の整数) 2^k*(2*mn+m^2+n^2)=(m^2-n^2)^2 2^k*((m^2-n^2)+m^2+n^2)=(2mn)^2
236 名前:132人目の素数さん mailto:sage [2023/12/21(木) 23:02:56.87 ID:KHL6UQJ4.net] ピタゴラス数を満たすm,nは下記のいずれかになる(kは任意の整数) 2*(mn)*(2^k-(mn))=(m^4-2^k*m^2)+(n^4-2^k*n^2) 2^(k-1)=n^2 ←n=2^aであらわされるときのみ左になる(2^a=2^(k-1)/2:a=(k-1)/2 )
237 名前:132人目の素数さん mailto:sage [2023/12/22(金) 00:44:20.51 ID:sEEN5YJU.net] ピタゴラス数を満たすm,nは下記のいずれかになる(pは任意の素数、kは任意の整数) p^k*(mn)*(1+(mn))=(m^4-m^2)+(n^4-n^2) 33^2+56^2=65^2 m=7 n=4 3^2*(56+65)=33^2 3^k*(2*mn+(m^2+n^2))=(m^2-n^2)^2 2*(mn)*(3^k+(mn))=(m^4-3^k*m^2)+(n^4-3^k*n^2) 2^(k-1)=n^2 ←n=2^aであらわされるときのみ左になる(2^a=2^(k-1)/2:a=(k-1)/2 )
238 名前:132人目の素数さん mailto:sage [2023/12/22(金) 00:49:48.68 ID:sEEN5YJU.net] ピタゴラス数を満たすm,nは下記のいずれかになる(pは任意の素数、kは任意の整数) 1316^2+8787^2=8885^2 7^2*2*(8885+8787)=1316^2 2*(mn)*(Πp^k+(mn))=(m^4-Πp^k*m^2)+(n^4-Πp^k*n^2)
239 名前:132人目の素数さん mailto:sage [2023/12/22(金) 00:52:53.62 ID:sEEN5YJU.net] A^2+B^2=C^2 A^2=(B+C)*Πp^k (B+C)*Πp^k+B^2=C^2 B*(1-Πp^k*B)=C*(1+Πp^k*C)
240 名前:132人目の素数さん [2023/12/22(金) 09:03:25.47 ID:2klI76d6.net] 隠しアイテム的な式はないのか
241 名前:132人目の素数さん mailto:sage [2023/12/23(土) 02:17:03.83 ID:O5dB6rNY.net] >>240 (((a^2+b^2)*e^(i*2*arctan(a/b))+2^(3/2)*a*b*e^(i*-π/4)))=-a^2+2ab+b^2 (((a^2+b^2)*e^(i*2*arctan(b/a))+2^(3/2)*a*b*e^(i*-π/4)))=a^2+2ab-b^2 (n+1)^2+2n*(n+1)-n^2=(n+1)^2+2(n+2)*(n+1)-(n+2)^2 ←nに何を入れても等しくなる (((2^2+1^2)*e^(i*2*arctan(2/1))+2^(3/2)*2*1*e^(i*-π/4)))=1 (((2^2+1^2)*e^(i*2*arctan(1/2))+2^(3/2)*2*1*e^(i*-π/4)))=7 (((2^2+3^2)*e^(i*2*arctan(3/2))+2^(3/2)*2*3*e^(i*-π/4)))=7 (((2^2+3^2)*e^(i*2*arctan(2/3))+2^(3/2)*2*3*e^(i*-π/4)))=17 (((4^2+3^2)*e^(i*2*arctan(4/3))+2^(3/2)*3*4*e^(i*-π/4)))=17 (((4^2+3^2)*e^(i*2*arctan(3/4))+2^(3/2)*3*4*e^(i*-π/4)))=31 (((4^2+5^2)*e^(i*2*arctan(5/4))+2^(3/2)*5*4*e^(i*-π/4)))=31 (((4^2+5^2)*e^(i*2*arctan(4/5))+2^(3/2)*5*4*e^(i*-π/4)))=49 (((6^2+5^2)*e^(i*2*arctan(6/5))+2^(3/2)*5*6*e^(i*-π/4)))=49 (((6^2+5^2)*e^(i*2*arctan(5/6))+2^(3/2)*5*6*e^(i*-π/4)))=71 ζ1(s)=|ζ1(s)|*e^(i*θ) ←素数のみのゼータ関数(s=0点の時)=1/2^s+1/3^s+1/5^s+・・・ ζ2(s)=|ζ2(s)|*e^(i*(θ+π)) ←非素数のみのゼータ関数(s=0点の時)=1+1/4^s+1/6^s+1/8^s+1/9^s+・・・ ζ1(s)+ζ2(s)=ζ(s) |ζ1(s)|=|ζ2(s)| ζ1(s)*ζ2(s)=|ζ1(s)|*|ζ2(s)|*e^(i*(2θ+π)) ζ1(s)=√(ζ1(s)*ζ2(s))*e^(-iπ/2) ζ2(s)=√(ζ1(s)*ζ2(s))*e^(iπ/2) √(ζ1(s)*ζ2(s))*e^(-iπ/2)+√(ζ1(s)*ζ2(s))*e^(iπ/2)=ζ(s) (√(ζ1(s)*ζ2(s))*e^(-iπ/2)+√(ζ1(s)*ζ2(s))*e^(iπ/2))^2=ζ(s)^2 (ζ1(s)*ζ2(s))*e^(-iπ)+(ζ1(s)*ζ2(s))*e^(iπ)+2*(ζ1(s)*ζ2(s))=ζ(s)^2 ←2*(ζ1(s)*ζ2(s))=ζ(s)^2になる 2^n*(ζ1(s)*ζ2(s))^(1/n)=2*(ζ1(s)*ζ2(s))=(ζ1(s)+ζ2(s))^2=ζ(s)^2 lim [n→∞] 2^(n-1)*(ζ1(s)*ζ2(s))^(1/n)=ζ(s) ←n→無限のとき
242 名前:132人目の素数さん mailto:sage [2023/12/23(土) 20:26:12.89 ID:O5dB6rNY.net] √(ζ1(s)*ζ2(s))*e^(-iπ/2)+√(ζ1(s)*ζ2(s))*e^(iπ/2)=ζ(s) ((ζ1(s)*ζ2(s))(1/2^2)*e^(-iπ/2^2)+(ζ1(s)*ζ2(s))^(1/2^2)*e^(iπ/2^2))^2=ζ(s)+2*(ζ1(s)*ζ2(s))^(1/2) (ζ1(s)*ζ2(s))(1/2^2)*e^(-iπ/2^2)+(ζ1(s)*ζ2(s))^(1/2^2)*e^(iπ/2^2)=(ζ(s)+2*(ζ1(s)*ζ2(s))^(1/2))^(1/2) ((ζ1(s)*ζ2(s))(1/2^3)*e^(-iπ/2^3)+(ζ1(s)*ζ2(s))^(1/2^3)*e^(iπ/2^3))^2=(ζ(s)+2*(ζ1(s)*ζ2(s))^(1/2))^(1/2)+2*(ζ1(s)*ζ2(s))^(1/2^2) ((ζ1(s)*ζ2(s))(1/2^3)*e^(-iπ/2^3)+(ζ1(s)*ζ2(s))^(1/2^3)*e^(iπ/2^3))=((ζ(s)+2*(ζ1(s)*ζ2(s))^(1/2))^(1/2)+2*(ζ1(s)*ζ2(s))^(1/2^2))^(1/2) lim [n→∞]((ζ1(s)*ζ2(s))(1/2^n)*e^(-iπ/2^n)+(ζ1(s)*ζ2(s))^(1/2^n)*e^(iπ/2^n))=2 2=(((((ζ(s)+2*(ζ1(s)*ζ2(s))^(1/2))^(1/2)+2*(ζ1(s)*ζ2(s))^(1/2^2))^(1/2)+2*(ζ1(s)*ζ2(s))^(1/2^3))^(1/2)+2*(ζ1(s)*ζ2(s))^(1/2^4))^(1/2)+・・・)
243 名前:132人目の素数さん mailto:sage [2023/12/23(土) 20:46:11.91 ID:O5dB6rNY.net] e^(i*2pi*(1/2^(1/2+i*14.12)+1/3^(1/2+i*14.12)+1/5^(1/2+i*14.12)+1/7^(1/2+i*14.12)))=0.34907 e^(1.10973 i) ←素数のみのゼータ関数 e^(i*2pi*(1/1^(1/2+i*14.12)+1/4^(1/2+i*14.12)+1/6^(1/2+i*14.12)+1/8^(1/2+i*14.12)))= 1.72006 e^(-2.43462 i) ←非素数のみのゼータ関数 桁が足りないため長さは違うものの約πだけ位相がずれる
244 名前:132人目の素数さん mailto:sage [2023/12/23(土) 21:08:12.47 ID:O5dB6rNY.net] e^(i*2pi*(1/2^(1/2+i*14.12)+1/3^(1/2+i*14.12)+1/5^(1/2+i*14.12)+1/7^(1/2+i*14.12)+1/11^(1/2+i*14.12)+・・・))= e^(i*2pi*(X+i*Y))=e^-Y*e^(i*2pi*(X))←素数のみのゼータ関数 e^(i*2pi*(1/1^(1/2+i*14.12)+1/4^(1/2+i*14.12)+1/6^(1/2+i*14.12)+1/8^(1/2+i*14.12)+1/9^(1/2+i*14.12)+・・・))=e^(i*2pi*(-X-i*Y))=e^Y*e^(i*2pi*(-X))←非素数のみのゼータ関数 長さは反比例して角度はπずれる
245 名前:132人目の素数さん mailto:sage [2023/12/23(土) 22:07:09.83 ID:O5dB6rNY.net] e^(i*2pi*(a/2^2+b/3+c/5))=e^(i*2pi*(e/60)) ←時計の秒針の回転角度を可変させて1秒ではなく60/2^2秒と60/3秒と60/5秒で動くようにする a≠2n、b≠3n、c≠5nのとき秒針の先が7^2を除きすべて素数になる e^(i*2pi*(a/2^2+b/3+c/5)) e^(i*2pi*(a/2^2+b/3+c/5+d/7)) e^(i*2pi*(1/2^2+1/3+3/5+5/7))=e^(-(43 i π)/210) ←43が素数なので=210-47=163も素数 e^(i*2pi*(1/2^2+1/3+3/5+3/7))=e^(-(163 i π)/210) ←163が素数なので=210-163=47も素数 e^(i*2pi*(1/2^2+1/3+3/5+3/7+10/11))=e^(-(2213 i π)/2310) ←2213が素数なので2310-2213=97も素数 e^(i*2pi*(1/2^2+1/3+3/5+3/7+10/11+5/13))=e^(-(5669 i π)/30030)←5669が素数なので30030-5669=24631も素数
246 名前:132人目の素数さん mailto:sage [2023/12/23(土) 23:11:16.68 ID:O5dB6rNY.net] e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^a)+1)/13^a)) aを大きくして出てくる分子が17^2未満か17^2より大きく17*19より小さくなるように調整する(分母は3*5*7*11*13^nになる) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^1)/13^1))=e^((1091 i π)/15015) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^2)/13^2))=e^((323 i π)/195195) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^3)/13^3))=e^((1889 i π)/2537535) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^4)/13^4))=e^((1457 i π)/32987955) ←1457=31*47 非素数 e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^5))/13^5))=e^((461 i π)/428843415) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^6))/13^6))=e^((1373 i π)/5574964395)
247 名前:132人目の素数さん mailto:sage [2023/12/23(土) 23:24:09.77 ID:O5dB6rNY.net] e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^13)/13^13))=e^((41 i π)/349820748114052215) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^14)/13^14))=e^((41 i π)/349820748114052215) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^21)/17^21))=e^((26797 i π)/1037415387703826124205620663255)
248 名前:132人目の素数さん mailto:sage [2023/12/23(土) 23:54:48.57 ID:O5dB6rNY.net] e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*1/(1/13-1/17))*(1/13-1/17))))=e^((67 i π)/255255)
249 名前:132人目の素数さん mailto:sage [2023/12/24(日) 00:00:32.82 ID:JbDEdDB5.net] e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*1/(1/13+1/11))*(1/11+1/13))))=e^((41 i π)/15015) e^(i*2pi*(1/2+1/3+1/5-(floor((1/2+1/3+1/5)*1/(1/7+1/11))*(1/7+1/11))))=e^((227 i π)/1155) e^(i*2pi*(1/2+1/3+1/5-(floor((1/2+1/3+1/5)*1/(1/7-1/11))*(1/7-1/11))))=e^((107 i π)/1155) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*1/(1/17-1/19))*(1/17-1/19))))=e^((3583 i π)/4849845)
250 名前:132人目の素数さん mailto:sage [2023/12/24(日) 01:14:40.11 ID:JbDEdDB5.net] e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^18)/13^18))=e^((113 i π)/129885995029510789063995) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^38)/13^38))=e^((113 i π)/2468478630400200118633482921158271484075069995) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^58)/13^58))=e^((113 i π)/46913346949823172969328602662591113055268146803561884190150793875995)
251 名前:132人目の素数さん mailto:sage [2023/12/24(日) 01:22:47.91 ID:JbDEdDB5.net] e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^37)/17^37))=e^((907 i π)/50481869235825218325371365653453436636492074365655) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^38)/17^38))=e^((907 i π)/50481869235825218325371365653453436636492074365655)
252 名前:132人目の素数さん mailto:sage [2023/12/24(日) 13:38:02.71 ID:JbDEdDB5.net] e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^14)/7^14))=e^((19 i π)/10173346092735) e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^15)/7^15))=e^((13 i π)/71213422649145) e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^16)/7^16))=e^((i π)/498493958544015) e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^17)/7^17))=e^((i π)/498493958544015) P(n)=n番目の素数 Σ1/P(m)=1からn番目までの素数の逆数和 F(k)=e^(i*2pi*(Σ1/P(m)-floor((Σ1/P(m))*P(n+1)^k)/P(n+1)^k)) F(k)=F(k+1)となるときのkをいれたF(k)の分子は素数になる
253 名前:132人目の素数さん mailto:sage [2023/12/24(日) 13:42:02.27 ID:JbDEdDB5.net] F(k)=F(k+1)となるとき floor((Σ1/P(m))*P(n+1)^k)/P(n+1)^k=floor((Σ1/P(m))*P(n+1)^(k+1))/P(n+1)^(k+1) floor((Σ1/P(m))*P(n+1)^(k+1))=P(n+1)*floor((Σ1/P(m))*P(n+1)^k)←P(n+1)をfloor関数からくくりだせるためΣ1/P(m))*P(n+1)^kの小数点以下にP(k)をかけたものが1を上回らないことになる floor((Σ1/P(m))*P(n+1)^k)が最小値である期待値が高い
254 名前:132人目の素数さん mailto:sage [2023/12/24(日) 13:51:06.89 ID:JbDEdDB5.net] e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^37)/17^37))=e^((6737 i π)/50481869235825218325371365653453436636492074365655) e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^38)/17^38))=e^((24439 i π)/858191777009028711531313216108708422820365264216135) e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^41)/17^41))=e^((8867 i π)/4216296200445358059753341830742084481316454543093871255 e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^a)/17^a))←aが大きくなるほど分子に素数が出やすくなる
255 名前:132人目の素数さん mailto:sage [2023/12/24(日) 14:02:19.38 ID:JbDEdDB5.net] e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^(47+60n))/17^(47+60n)))=cos((20333 π)/6832189821217747175293972892253321626679167382039731441189354968334912280777158953667012897071399383555565045105965234666093120407935095) + sin((20333 π)/6832189821217747175293972892253321626679167382039731441189354968334912280777158953667012897071399383555565045105965234666093120407935095) i e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^(47+60n))/17^(47+60n)))の分子は20333で一定 e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^(77+60n))/17^(77+60n)))の分子は14327で一定 周期性がある分子は素数である可能性が高い
256 名前:132人目の素数さん mailto:sage [2023/12/24(日) 14:05:15.96 ID:JbDEdDB5.net] e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^(37+60n))/17^(37+60n)))=e^((6737 i π)/50481869235825218325371365653453436636492074365655) e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13-floor((1/2-1/3+1/5-1/7+1/11-1/13)*17^(37+60n))/17^(37+60n)))の分子は6737で一定
257 名前:132人目の素数さん mailto:sage [2023/12/24(日) 14:14:00.06 ID:JbDEdDB5.net] P(n)=n番目の素数 Σ1/P(m)=1からn番目までの素数の逆数和 F(a,b,c)=e^(i*2pi*(Σ1/P(m)-floor((Σ1/P(m))*P(n+1)^(a+b*c))/P(n+1)^(a+b*c))) F(a,b,c)=F(a,b,c+l(l=1以上の整数))となるときのa,b,cをいれたF(a,b,c)の分子は素数になる
258 名前:132人目の素数さん mailto:sage [2023/12/24(日) 14:21:39.91 ID:JbDEdDB5.net] F(a,b,c)=e^(i*2pi*(1/2-1/3+1/5-1/7+1/11-1/13+1/17-floor((1/2-1/3+1/5-1/7+1/11-1/13+1/17)*19^(851+840n))/19^(851+840n)))=cos((454253 /・・・ ←周期性を持つので(a=851,b=840、c=1以上の整数)454253は素数
259 名前:132人目の素数さん mailto:sage [2023/12/24(日) 19:44:48.47 ID:JbDEdDB5.net] e^(i*2pi*(1/2-floor((1/2)*3)/3-floor((1/2-floor((1/2)*3)/3)*5)/5-floor((1/2-floor((1/2)*3)/3-floor((1/2-floor((1/2)*3)/3)*5)/5)*7^a)/7^a))=e^((5 i π)/105) ←aによらず分子=5で一定
260 名前:132人目の素数さん mailto:sage [2023/12/24(日) 23:36:16.40 ID:JbDEdDB5.net] 下の条件の時cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n)) =cos(2pi*(X/(2*3*5*7)^n))のXは必ず素数 a≠2n、b≠3n、c≠5n、d≠7n 1>cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n)) >cos(2pi*(11^2/(2*3*5*7)^n)) cos(2pi*(11^2/(2*3*5*7)^n))>cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n))>cos(2pi*(11*13/(2*3*5*7)^n)) nが大きくなると満たさなければいけない範囲が狭まるものの、nが小さくなるととれる値の数が減るため範囲内に入る期待値が小さくなる(素数の個数をいくら増やしても同じ)
261 名前:132人目の素数さん mailto:sage [2023/12/24(日) 23:49:32.46 ID:JbDEdDB5.net] cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n))=cos(2pi*(X/(2*3*5*7)^n) Xに出てくる数の個数は全体で(2*3*5*7)^n個 (2^n-2)*(3^n-3)*(5^n-5)*(7^n-7)個の2,3,5,7を素因数に持たない数ができる(11以上の素因数の積になる可能性が出てしまう) (2*3*5*7)^n-(2^n-2)*(3^n-3)*(5^n-5)*(7^n-7)個は必ず2,3,4,5の最低どれか1つを素因数に持つ数になる 2,3,5,7を素因数に持たない数が円周上に均等に分布していると仮定するとき範囲内にある数は 約(2^n-2)*(3^n-3)*(5^n-5)*(7^n-7)*(2*11^2)/(2*3*5*7)^n個とみなせる
262 名前:132人目の素数さん mailto:sage [2023/12/24(日) 23:51:15.55 ID:JbDEdDB5.net] (2^2-2)*(3^2-3)*(5^2-5)*(7^2-7)*(2*11^2)/(2*3*5*7)^2≒55個 55個の素数を表現できる可能性がある
263 名前:132人目の素数さん mailto:sage [2023/12/24(日) 23:52:24.94 ID:JbDEdDB5.net] cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n))=cos(2pi*(X/(2*3*5*7)^n) Xに出てくる数の個数は全体で(2*3*5*7)^n個 (2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))個の2,3,5,7を素因数に持たない数ができる(11以上の素因数の積になる可能性が出てしまう) (2*3*5*7)^n-(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))個は必ず2,3,4,5の最低どれか1つを素因数に持つ数になる 2,3,5,7を素因数に持たない数が円周上に均等に分布していると仮定するとき範囲内にある数は 約(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))*(2*11^2)/(2*3*5*7)^n個とみなせる
264 名前:132人目の素数さん mailto:sage [2023/12/24(日) 23:54:35.61 ID:JbDEdDB5.net] 表現できる素数は一定のはずなのでnの値によらず 約(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))*(2*11^2)/(2*3*5*7)^n個は一定になる (2^2-2)*(3^2-3)*(5^2-5)*(7^2-7)*(2*11^2)/(2*3*5*7)^2≒55個 (2^3-2^2)*(3^3-3^2)*(5^3-5^2)*(7^3-7^2)*(2*11^2)/(2*3*5*7)^3≒55個 (2^4-2^3)*(3^4-3^3)*(5^4-5^3)*(7^4-7^3)*(2*11^2)/(2*3*5*7)^4≒55個
265 名前:132人目の素数さん mailto:sage [2023/12/24(日) 23:58:07.44 ID:JbDEdDB5.net] P(k)はk番目の素数 1<=k<=mの時 2*P(m+1)^2*1/Π(P(k)^n*Π(P(k)^n-P(k)^(n-1))はnの値によらず一定
266 名前:132人目の素数さん mailto:sage [2023/12/25(月) 00:06:03.64 ID:cm14oBhI.net] -11^2<X<11^2の範囲内に約55個素数があるため2で割って 2,3,5,7を素因数に持たない数が円周上に均等に分布していると仮定するとき範囲内にある数は 約(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))*(11^2)/(2*3*5*7)^n個とみなせる
267 名前:132人目の素数さん mailto:sage [2023/12/25(月) 00:07:56.22 ID:cm14oBhI.net] 素数121以下の素数は30個なので約(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))*(11^2)/(2*3*5*7)^n個とnによらず近づく
268 名前:132人目の素数さん mailto:sage [2023/12/25(月) 00:10:58.83 ID:cm14oBhI.net] 1からP(m+1)^2の範囲内には (P(k)はk番目の素数、1<=k<=mの時) 約P(m+1)^2*1/Π(P(k)^n*Π(P(k)^n-P(k)^(n-1))個の素数がある
269 名前:132人目の素数さん mailto:sage [2023/12/25(月) 00:16:21.61 ID:cm14oBhI.net] (2^2-2^(1))*(3^2-3^(1))*(5^2-5^(1))*(7^2-7^(1))*(11^2-11^(1))*(13^2)/(2*3*5*7*11)^2≒35個 1から13^2の範囲内には39個の素数があるためほぼ等しい (2^2-2^(1))*(3^2-3^(1))*(5^2-5^(1))*(7^2-7^(1))*(11^2-11^(1))*(13^2-13^(1))*(17^2)/(2*3*5*7*11*13)^2≒55個 1から17^2の範囲内には61個の素数があるためほぼ等しい
270 名前:132人目の素数さん mailto:sage [2023/12/25(月) 00:24:30.40 ID:cm14oBhI.net] P(m+1)^2*1/Π(P(k)^n*Π(P(k)^n-P(k)^(n-1))=(1-1/2)*(1-1/3)*・・・*(1-1/P(m))*P(m+1)^2 1以上∞以下の範囲内の素数の個数は lim [m→∞] P(m+1)^2/ζ(1)=∞になる P(∞+1)^2のほうがζ(1)よりはるかに大きい
271 名前:132人目の素数さん mailto:sage [2023/12/25(月) 00:53:21.12 ID:cm14oBhI.net] 11=floor(√(11^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)))) 11=floor(√(30/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)))) 13=floor(√(13^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)))) 13=floor(√(39/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)))) 17=floor(√(17^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)))) 17=floor(√(61/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)))) P(m+1)=floor(√(P(m+1)^2より小さい素数の個数/(Π(1-1/P(k)))))
272 名前:132人目の素数さん mailto:sage [2023/12/25(月) 00:57:52.25 ID:cm14oBhI.net] floor(√(19^2より小さな素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)))) 19=floor(√(72/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)))) floor(√(23^2より小さな素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)))) 23≒24=floor(√(99/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)))) ←ずれるため近似にしかならない
273 名前:132人目の素数さん mailto:sage [2023/12/25(月) 01:01:45.24 ID:cm14oBhI.net] floor(√(29^2より小さな素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)))) 29=floor(√(141/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)))) floor(√(31^2より小さな素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)))) 31≒32=floor(√(162/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)))) floor(√(37^2より小さな素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)))) 37=floor(√(219/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31))))
274 名前:132人目の素数さん mailto:sage [2023/12/25(月) 01:06:01.90 ID:cm14oBhI.net] 41≒42=floor(√(263/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)))) 43≒44=floor(√(283/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)))) 47≒48=floor(√(329/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)*(1-1/43)))) 53≒54=floor(√(409/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)*(1-1/43)*(1-1/47))))
275 名前:132人目の素数さん mailto:sage [2023/12/25(月) 01:11:21.77 ID:cm14oBhI.net] 59=floor(√(487/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)*(1-1/43)*(1-1/47)*(1-1/53)))) 61≒62=floor(√(519/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)*(1-1/43)*(1-1/47)*(1-1/53)*(1-1/59)))) 67≒68=floor(√(609/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)*(1-1/17)*(1-1/19)*(1-1/23)*(1-1/29)*(1-1/31)*(1-1/37)*(1-1/41)*(1-1/43)*(1-1/47)*(1-1/53)*(1-1/59)*(1-1/61))))
276 名前:132人目の素数さん mailto:sage [2023/12/25(月) 01:19:26.84 ID:cm14oBhI.net] 97=floor(√(1163/(770527199232000/5855632691117327*(1-1/67)*(1-1/71)*(1-1/73)*(1-1/79)*(1-1/83)*(1-1/89)))) floor(√(P(m+1)^2より小さい素数の個数/(Π(1-1/P(k)))))が2の倍数の時は1引くことで素数になる
277 名前:132人目の素数さん mailto:sage [2023/12/25(月) 01:45:02.00 ID:cm14oBhI.net] 1からn番目の素数のみでn+1番目の素数の2乗より小さな素数の個数を求めることができれば 1からn番目の素数のみでn+1番目の素数を表現できる
278 名前:132人目の素数さん mailto:sage [2023/12/25(月) 12:25:12.09 ID:cm14oBhI.net] P(m+1)≒floor(√(P(m+1)^2より小さい素数の個数/(Π(1-1/P(k))))) 素数定理=√x/ln(x)+E(x)(誤差項=√x*ln(x)) P(m+1)^2より小さい素数の個数≒(1/2)*P(m+1)^2/ln(P(m+1))+2*P(m+1)*ln(P(m+1)) √((1/2)*P(m+1)^2/ln(P(m+1))+2*P(m+1)*ln(P(m+1))*1/Π(1-1/P(k))) P(m+1)≒floor(P(m+1)*√((1/2)*1/ln(P(m+1))+2*ln(P(m+1))/P(m+1)*1/Π(1-1/P(k)))) √((1/2)*1/ln(P(m+1))+2*ln(P(m+1))/P(m+1)*1/Π(1-1/P(k)))が1に収束する lim P(m+1)→∞のときln(P(m+1))/P(m+1)=0 1/2*1/ln(P(m+1))*1/Π(1-1/P(k))=1 P(m+1)=e^(1/2*1/Π(1-1/P(k)))=e^(1/2*ζ(1))←m=∞の時の無限大の素数
279 名前:132人目の素数さん mailto:sage [2023/12/25(月) 12:37:05.29 ID:cm14oBhI.net] √(((1/2)*1/ln(5))*1/((1-1/2)(1-1/3)))=0.96 √(((1/2)*1/ln(7))*1/((1-1/2)(1-1/3)(1-1/5)))=0.98 √(((1/2)*1/ln(11))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)))=0.95 √(((1/2)*1/ln(13))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)))=0.96 √(((1/2)*1/ln(17))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)(1-1/13)))=0.95 √(((1/2)*1/ln(19))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)(1-1/13)(1-1/17)))=0.96
280 名前:132人目の素数さん mailto:sage [2023/12/25(月) 12:40:21.03 ID:cm14oBhI.net] √(((1/2)*1/ln(23))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)(1-1/13)(1-1/17)(1-1/19)))=0.96 Π(1-1/P(k))=1からn番目の素数積 √(((1/2)*1/ln(P(n+1))*1/(Π(1-1/P(k)))≒1 e^(1/2*1/Π(1-1/P(k)))≒P(n+1) ←n+1番目の素数はe^(1/2*1/Π(1-1/P(k)))に近似する
281 名前:132人目の素数さん mailto:sage [2023/12/25(月) 18:23:09.30 ID:cm14oBhI.net] √(((1/2)*1/ln(P(n+1))*1/(Π(1-1/P(k)))/√(((1/2)*1/ln(P(n))*1/(Π(1-1/P(k)))≒1 P(n+1)≒e^(lnP(n)/(1-1/P(n))と近似できる P(2)=5≒5.19=e^(ln3/(1-1/3)) P(3)=7≒7.47=e^(ln5/(1-1/5)) P(4)=11≒9.68=e^(ln7/(1-1/7)) P(5)=13≒13.98=e^(ln11/(1-1/11))
282 名前:132人目の素数さん mailto:sage [2023/12/25(月) 18:36:33.81 ID:cm14oBhI.net] 誤差が大きくなってくるので P(n+2)= e^(lnP(n)/((1-1/P(n))*(1-1/P(n+1))))やP(n+3)= e^(lnP(n)/((1-1/P(n))*(1-1/P(n+1))*(1-1/P(n+2))))と別々の表記にしたものを平均化して誤差を減らす P(3)=7=7.66≒(e^(ln5/(1-1/5))+e^(ln3/((1-1/3)(1-1/5))))/2 P(4)=11≒10.3984=(e^(ln7/(1-1/7))+e^(ln5/((1-1/5)(1-1/7)))+e^(ln3/((1-1/3)(1-1/5)(1-1/7))))/3 P(5)=13≒13.11=(e^(ln11/(1-1/11))+e^(ln7/((1-1/7)(1-1/11)))+e^(ln5/((1-1/5)(1-1/7)(1-1/11))))/3 ←およそ3個ほどで平均化すると誤差が減らせるためfloor関数かupper関数で素数にできる
283 名前:132人目の素数さん mailto:sage [2023/12/25(月) 23:30:37.87 ID:cm14oBhI.net] √((1/ln(P(m+2)^2)+ln(P(m+2)^2)/P(m+2))*1/Π(1-1/P(k)))≒1 √((1/ln(P(m+1)^2)+ln(P(m+1)^2)/P(m+1))*1/Π(1-1/P(k)))≒1 √(1/ln(P(n+1)^2)+ln(P(n+1)^2)/P(n+1))=√(1-1/n)*√(1/ln(P(n)^2)+ln(P(n)^2)/P(n)) √(1/ln(x^2)+ln(x^2)/x)≒√(1-1/n)*√(1/ln(P(n)^2)+ln(P(n)^2)/P(n)) ←x=n+1番目の素数(x>0を満たす解)
284 名前:132人目の素数さん mailto:sage [2023/12/25(月) 23:37:25.00 ID:cm14oBhI.net] P(n)はn番目の素数 √(1/ln(P(n+1)^2)+ln(P(n+1)^2)/P(n+1))-√(1-1/n)*√(1/ln(P(n)^2)+ln(P(n)^2)/P(n)) ≒0←n番目の素数とn+1番目の素数を入れるとほぼ0の差になる √(1/ln(15319^2)+ln(15319^2)/15319)-√(1-1/15313)*√(1/ln(15313^2)+ln(15313^2)/15313)≒0=1.99*10^-6 √(1/ln(90031^2)+ln(90031^2)/90031)-√(1-1/90023)*√(1/ln(90023^2)+ln(90023^2)/90023)≒0=3.041*10^-7
285 名前:132人目の素数さん mailto:sage [2023/12/26(火) 00:22:17.81 ID:HXteC7SW.net] ζ(s)=1/((1-1/2^s)*(1-1/3^s)*(1-1/5^s)*・・・*(1-1/e^(s*ζ(1)/2))) ←ゼータ関数の計算に使われる最大の素数がe^(s*ζ(1)/2)だと仮定するとき 1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=1/(1-cos(y*ζ(1)/2)/e^(ζ(1)/2^2)+i*sin(y*ζ(1)/2)/e^(ζ(1)/2^2)) 1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)/2)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2^2)) 1/(1-1/e^(ζ(1)/2*x+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)*x)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2*x)) x≠1/2でないとするとe^(ζ(1)*x)≠e^(ζ(1)/2)になるためゼータ関数の計算に使われる最大の素数がe^(s*ζ(1)/2)になる仮定に反する
286 名前:132人目の素数さん mailto:sage [2023/12/26(火) 00:23:14.84 ID:HXteC7SW.net] ζ(s)=1/((1-1/2^s)*(1-1/3^s)*(1-1/5^s)*・・・*(1-1/e^(s*ζ(1)/2))) ←ゼータ関数の計算に使われる最大の素数がe^(ζ(1)/2)だと仮定するとき 1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=1/(1-cos(y*ζ(1)/2)/e^(ζ(1)/2^2)+i*sin(y*ζ(1)/2)/e^(ζ(1)/2^2)) 1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)/2)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2^2)) 1/(1-1/e^(ζ(1)/2*x+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)*x)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2*x)) x≠1/2でないとするとe^(ζ(1)*x)≠e^(ζ(1)/2)になるためゼータ関数の計算に使われる最大の素数がe^(ζ(1)/2)になる仮定に反する
287 名前:132人目の素数さん mailto:sage [2023/12/26(火) 12:26:19.68 ID:HXteC7SW.net] > > e^(i*2pi*(a/2^n+b/3^n+c/5^n+d/7^n+・・・+1/P(n)^n) > 2,3,5,7・・・P(n)を素因数に持たない数が円周上に均等に分布しているとき > 約(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))*・・・*(P(n)^n-P(n)^(n-1))*(P(n+1)^2)/(2,3,5,7・・・P(n))^n個とみなせる > > a1からanまでに分母の素因数を持たない数を入れるとa1≠2、a2≠3、・・・an≠P(n) > e^(i*2pi*(a1/2^n+a2/3^n+a3/5^n+a4/7^n+・・・+an/P(n)^n)=e^(i*2pi*(X/(2,3,5,7・・・P(n))^n) Xは1番目からn番目の素数を素因数に持たない > Xの正確な分布が分かればP(n+1)^2より小さな素数の個数が正確に求まるため誤差がなくなる
288 名前:132人目の素数さん mailto:sage [2023/12/27(水) 15:48:50.75 ID:wasfqitI.net] (e^(ln83/(1-1/83))+e^(ln79/((1-1/79)(1-1/83)))+e^(ln73/((1-1/73)(1-1/79)(1-1/83)))+e^(ln71/((1-1/71)(1-1/73)(1-1/79)(1-1/83)))+e^(ln67/((1-1/67)(1-1/71)(1-1/73)(1-1/79)(1-1/83)))+e^(ln61/((1-1/61)(1-1/67)(1-1/71)(1-1/73)(1-1/79)(1-1/83))))/6 =88.22231729709546598≒89 n+1番目の素数は1からn番目の素数で近似できる P(n+1)=upper[1/n*Σ(e^(lnP(n-k)/Π(1-P(m)) ] (n-k<=m<=n,0<=k<=n-1))
289 名前:132人目の素数さん mailto:sage [2023/12/28(木) 12:49:48.69 ID:/6JWP4pU.net] 480*12*16*18*(23^2)/(2310*13*17*19)+8=98.47(23^2未満の素数=99個) 480*12*16*18*22*(29^2)/(2310*13*17*19*23)+9=146.57(29^2未満の素数=146個) 480*12*16*18*22*28*(31^2)/(2310*13*17*19*23*29)+10=161.78 (31^2未満の素数=162個) 480*12*16*18*22*28*30*(37^2)/(2310*13*17*19*23*29*31)+11=220.25 (37^2未満の素数=219個) 480*12*16*18*22*28*30*36*(41^2)/(2310*13*17*19*23*29*31*37)+12=262.000021 (41^2未満の素数=263個) 480*12*16*18*22*28*30*36*40*(43^2)/(2310*13*17*19*23*29*31*37*41)+13=281.27 (43^2未満の素数=283個) 1からP(m+1)^2の範囲内には (P(k)はk番目の素数、1<=k<=mの時) 約 P(m+1)^2*Π(1-1/P(k))+(n-1) 個の素数がある
290 名前:132人目の素数さん mailto:sage [2023/12/28(木) 23:54:04.76 ID:/6JWP4pU.net] 1からP(m+1)^2の範囲内には (P(k)はk番目の素数、1<=k<=mの時) 約 P(m+1)^2*Π(1-1/P(k))+m 個の素数がある 1から+∞の間にはlim (m→∞) P(m+1)/ζ(1)+m=e^(ζ(1)/2)/ζ(1)+∞個の素数がある
291 名前:132人目の素数さん [2023/12/29(金) 01:04:26.73 ID:voXPt7J2.net] ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x) 素数の分だけ分母の項がかけられる yに応じて1を上回る時と1を下回る時がある xが1/2でないと分母の値が無限になるyが存在しない(1を上回る項が趨勢にならない)
292 名前:132人目の素数さん mailto:sage [2023/12/29(金) 01:34:53.04 ID:voXPt7J2.net] Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x) =(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう)とおけるため Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x) か無限になるときのxが1/2であることになる
293 名前:132人目の素数さん [2023/12/29(金) 02:42:24.37 ID:axaYrUXn.net] 一応素数の一般項はあるみたいだが……実用性が全く無い なのですうがくかいでは
294 名前:132人目の素数さん [2023/12/29(金) 06:38:25.88 ID:O2hO3W65.net] ゼータの特殊値の規則の方が面白そう
295 名前:132人目の素数さん mailto:sage [2023/12/29(金) 16:02:27.62 ID:voXPt7J2.net] Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう) (Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))=lim[n→∞] ((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))*n!)^(1/n)=∞^(1/∞)=1 (Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)) √(1+1/2^2x-2×cos(y×ln2)/2^x)+√(1+1/3^2x-2×cos(y×ln3)/3^x)+√(1+1/5^2x-2×cos(y×ln5)/5^x)+・・・+√(1+1/p(n)^2x-2×cos(y×lnp(n))/p(n)^x)=1 x=1/2でないと√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))のp(k)にk番目の素数を入れてすべての素数分足した際に1に収束しない可能性がある。(1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)の項目が+とーにぶれるため)
296 名前:132人目の素数さん mailto:sage [2023/12/29(金) 16:10:09.63 ID:voXPt7J2.net] Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう) (Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))=lim[n→∞] ((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))*n!)^(1/n)=((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))^(1/n)*(n!)^(1/n))=∞←lim[n→∞] (n!)^(1/n)が無限のため (Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)) √(1+1/2^2x-2×cos(y×ln2)/2^x)+√(1+1/3^2x-2×cos(y×ln3)/3^x)+√(1+1/5^2x-2×cos(y×ln5)/5^x)+・・・+√(1+1/p(n)^2x-2×cos(y×lnp(n))/p(n)^x)=∞ x=1/2でないと√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))のp(k)にk番目の素数を入れてすべての素数分足した際に無限に発散しない可能性がある。(収束してしまう可能性がある) (1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)の項目が+とーにぶれるため)
297 名前:132人目の素数さん mailto:sage [2023/12/29(金) 16:22:02.15 ID:voXPt7J2.net] y=0のタイミングですべて1を下回るためゼータ関数のζ(x+i*0)=∞になる(1未満のものが無限個かかって分母が0になるため) ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=1/0=∞ 1+1/2^2x-2×cos(y×ln2)/2^x < 1 1+1/3^2x-2×cos(y×ln3)/3^x < 1 逆にすべての項目が1以上になれば0に収束する(実際はそんなyが存在するのがx=1/2のときだけ) (1より大きい項目がたくさん出るタイミングがx=1/2以外では出てこない) ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=1/∞=0 1+1/2^2x-2×cos(y×ln2)/2^x > 1 1+1/3^2x-2×cos(y×ln3)/3^x > 1 1+1/5^2x-2×cos(y×ln5)/5^x > 1
298 名前:132人目の素数さん mailto:sage [2023/12/29(金) 21:13:50.10 ID:voXPt7J2.net] cos(2pi*(1/2+2/3+3/5))=cos(2pi*(7/(2*3*5))) cos(2pi*(1/2+2/3+1/5))=cos(2pi*(11/(2*3*5))) cos(2pi*(1/2+2/3+2/5))=cos(2pi*(13/(2*3*5)))=cos(2pi*((2*3*5-13)/(2*3*5)))=cos(2pi*(17/(2*3*5))) cos(2pi*(1/2+2/3+2/5))=cos(2pi*(17/(2*3*5))) cos(2pi*(1/2+2/3+1/5))=cos(2pi*(19/(2*3*5)))=cos(2pi*((2*3*5*7-19)/(2*3*5)))=cos(2pi*(41/(2*3*5))) cos(2pi*(1/2+2/3+3/5))=cos(2pi*(23/(2*3*5))) cos(2pi*(1/2+2/3+4/5))=cos(2pi*(29/(2*3*5))) cos(2pi*(1/2+2/3+4/5))=cos(2pi*(31/(2*3*5))) cos(2pi*(1/2+2/3+3/5))=cos(2pi*(37/(2*3*5))) cos(2pi*(1/2+2/3+1/5))=cos(2pi*(41/(2*3*5))) cos(2pi*(1/2+2/3+2/5))=cos(2pi*(43/(2*3*5))) cos(2pi*(1/2+2/3+2/5))=cos(2pi*(47/(2*3*5))) cos(2pi*(1/2+2/3+3/5+2/7))=cos(2pi*(11/(2*3*5*7)))=cos(2pi*((2*3*5*7-11)/(2*3*5*7)))=cos(2pi*(199/(2*3*5*7))) ←11*17以上、17^2未満なので素数 cos(2pi*(1/2+2/3+1/5+4/7))=cos(2pi*(13/(2*3*5*7)))=cos(2pi*((2*3*5*7-13)/(2*3*5*7)))=cos(2pi*(197/(2*3*5*7))) ←11*17以上、17^2未満なので素数 cos(2pi*(1/2+2/3+1/5+5/7))=cos(2pi*(17/(2*3*5*7)))=cos(2pi*((2*3*5*7-17)/(2*3*5*7)))=cos(2pi*(193/(2*3*5*7))) ←11*17以上、17^2未満なので素数 cos(2pi*(1/2+2/3+3/5+1/7))=cos(2pi*(19/(2*3*5*7)))=cos(2pi*((2*3*5*7-19)/(2*3*5*7)))=cos(2pi*(191/(2*3*5*7))) ←11*17以上、17^2未満なので素数 cos(2pi*(1/2+2/3+4/5+1/7))=cos(2pi*(23/(2*3*5*7)))=cos(2pi*((2*3*5*7-23)/(2*3*5*7)))=cos(2pi*(187/(2*3*5*7))) ←11*17 cos(2pi*(1/2+2/3+2/5+4/7))=cos(2pi*(29/(2*3*5*7)))=cos(2pi*((2*3*5*7-29)/(2*3*5*7)))=cos(2pi*(181/(2*3*5*7))) ←11^2以上、11^*17未満なので素数
299 名前:132人目の素数さん mailto:sage [2023/12/29(金) 21:22:54.77 ID:voXPt7J2.net] cos(2pi*(1/2+2/3+3/5+2/7))=cos(2pi*(11/(2*3*5*7)))=cos(2pi*((2*3*5*7-11)/(2*3*5*7)))=cos(2pi*(199/(2*3*5*7))) ←13^2以上、17^2未満なので素数 cos(2pi*(1/2+2/3+1/5+4/7))=cos(2pi*(13/(2*3*5*7)))=cos(2pi*((2*3*5*7-13)/(2*3*5*7)))=cos(2pi*(197/(2*3*5*7))) ←13^2以上、17^2未満なので素数 cos(2pi*(1/2+2/3+1/5+5/7))=cos(2pi*(17/(2*3*5*7)))=cos(2pi*((2*3*5*7-17)/(2*3*5*7)))=cos(2pi*(193/(2*3*5*7))) ←13^2以上、17^2未満なので素数 cos(2pi*(1/2+2/3+3/5+1/7))=cos(2pi*(19/(2*3*5*7)))=cos(2pi*((2*3*5*7-19)/(2*3*5*7)))=cos(2pi*(191/(2*3*5*7))) ←13^2以上、17^2未満なので素数 cos(2pi*(1/2+2/3+4/5+1/7))=cos(2pi*(23/(2*3*5*7)))=cos(2pi*((2*3*5*7-23)/(2*3*5*7)))=cos(2pi*(187/(2*3*5*7))) ←11*17 cos(2pi*(1/2+2/3+2/5+4/7))=cos(2pi*(29/(2*3*5*7)))=cos(2pi*((2*3*5*7-29)/(2*3*5*7)))=cos(2pi*(181/(2*3*5*7))) ←13^2以上、11*17未満なので素数 cos(2pi*(1/2+2/3+2/5+2/7))=cos(2pi*(31/(2*3*5*7)))=cos(2pi*((2*3*5*7-31)/(2*3*5*7)))=cos(2pi*(179/(2*3*5*7))) ←13^2以上、11*17未満なので素数 cos(2pi*(1/2+2/3+4/5+6/7))=cos(2pi*(37/(2*3*5*7)))=cos(2pi*((2*3*5*7-37)/(2*3*5*7)))=cos(2pi*(173/(2*3*5*7))) ←13^2以上、11*17未満なので素数 cos(2pi*(1/2+2/3+3/5+3/7))=cos(2pi*(41/(2*3*5*7)))=cos(2pi*((2*3*5*7-41)/(2*3*5*7)))=cos(2pi*(169/(2*3*5*7))) ←13^2 cos(2pi*(1/2+2/3+1/5+3/7))=cos(2pi*(43/(2*3*5*7)))=cos(2pi*((2*3*5*7-43)/(2*3*5*7)))=cos(2pi*(167/(2*3*5*7))) ←11*13以上、13^2未満なので素数
300 名前:132人目の素数さん mailto:sage [2023/12/30(土) 11:19:50.17 ID:jsoLHdB8.net] ζ(s)=Σ1/n^s (1-1/2^(s-1))*ζ(s)=(1-1/2^(s-1))*Σ1/n^s=Σ1/n^s-2*Σ1/(2n)^s=Σ(-1)^(n+1)/n^s ζ(s)=1/(1-1/2^(s-1))*Σ(-1)^n/n^s ζ(1/2)=1/(1-√2)*Σ(-1)^(n+1)/√n=1/(1-√2)*(1-1/√2+1/√3-1/√4+・・・・)≒-1.46
301 名前:132人目の素数さん mailto:sage [2023/12/30(土) 11:37:17.40 ID:jsoLHdB8.net] ζ(s)=1/(1-2^(2/3))*Σ(-1)^(n+1)/n^(1/3)=1-1/2^(1/3)+1/3^(1/3)-1/4^(1/3) Σ1/n^(1/3)=1+1/2^(1/3)+1/3^(1/3)-1/4^(1/3)+・・・ 1/2^(1/3)*Σ1/n^(1/3)=1/2^(1/3)+1/4^(1/3)+6^(1/3)+・・・ Σ1/n^(1/3)-2*1/2^(1/3)*Σ1/n^(1/3)=Σ(-1)^(n+1)/n^(1/3)=1-1/2^(1/3)+1/3^(1/3)-1/4^(1/3) Σ(-1)^(n+1)/n^(1/3)=(1-2^(2/3))*Σ1/n^(1/3) (1-2^(2/3))*Σ1/n^(1/3)=Σ(n=1〜∞) (-1)^(n+1)/(n^(1/3))≒0.572 ζ(1/3)=0.572/(1-2^(2/3))≒-0.97 ζ(1/3)=1/(1-2^(2/3))*(1-2^(2/3))*Σ1/n^(1/3)≒-0.97
302 名前:132人目の素数さん mailto:sage [2023/12/30(土) 12:07:17.28 ID:jsoLHdB8.net] ζ(1/2+i*y)=Σ(n=1〜∞) 1/(n)^(1/2+i*y) =0 ζ(1/2+i*y)=1/(1-1/2^(-1/2+i*y))*Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0 ←Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0 Σ(n=1〜∞) 1/(n)^(1/2+i*y) =0でもあり、Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0もある 1/1^s+1/2^s+1/3^s+1/4^s+・・・・=0 1/1^s-1/2^s+1/3^s-1/4^s+・・・・=0 1/1^s+1/3^s+1/5^s+1/7^s+・・・・=0 1/2^s+1/4^s+・・・・=0 Σ1/(2n)^(1/2+i*y)=0 Σ1/(2n+1)^(1/2+i*y)=0
303 名前:132人目の素数さん mailto:sage [2023/12/30(土) 20:00:06.26 ID:jsoLHdB8.net] ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2 +1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y) -1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2) +1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4) +1/42
304 名前:132人目の素数さん mailto:sage [2023/12/30(土) 20:14:12.74 ID:jsoLHdB8.net] ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2 +1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0) -1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2) +1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4) +1/42 =-1.436535803101403675249612014725209082488526639894421611110168217≒-1.46=ζ(1/2= -1.464072106873427134267436827982618352404737194303297963507762570 0.0037267799624996494940152894478854603924010305993525428737848287 -9.316949906249123735038223619713650981002576498381357184462... × 10^-6 1.3975424859373685602557335429570476471503864747572035776693... × 10^-7 +1/42
305 名前:132人目の素数さん mailto:sage [2023/12/30(土) 20:35:30.01 ID:jsoLHdB8.net] ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2 +1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y) -1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2) +1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4) +1/R2k ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2 +1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0) -1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2) +1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4) +1/42 =-1.460345326910927484773421538534732892012336163703945420633977740...≒-1.46=ζ(1/2) -1.464072106873427134267436827982618352404737194303297963507762570 0.0037267799624996494940152894478854603924010305993525428737848287 -9.316949906249123735038223619713650981002576498381357184462... × 10^-6 1.3975424859373685602557335429570476471503864747572035776693... × 10^-7
306 名前:132人目の素数さん mailto:sage [2023/12/30(土) 20:36:01.86 ID:jsoLHdB8.net] ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2 +1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y) -1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2) +1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4) +1/R2k ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2 +1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0) -1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2) +1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4) =-1.460345326910927484773421538534732892012336163703945420633977740...≒-1.46=ζ(1/2)
307 名前:132人目の素数さん mailto:sage [2023/12/30(土) 21:16:29.25 ID:jsoLHdB8.net] ζ(x+i*y')-ζ(x+i*y)=1-1+1/2^(x+i*y')-1/2^(x+i*y)+1/3^(x+i*y')-1/3^(x+i*y)+1/4^(x+i*y')-1/4^(x+i*y) +5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2 ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))+(1/3^(x/2+i*y'/2)-1/3^(x/2+i*y/2))*(1/3^(x/2+i*y'/2)+1/3^(x/2+i*y/2))+(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))*(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2)) +5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2 ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1+(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))*(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2)))+(1/3^(x/2+i*y'/2)-1/3^(x/2+i*y/2))*(1/3^(x/2+i*y'/2)+1/3^(x/2+i*y/2))+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2 1/4^(x/2+i*y'/2)-1/4^(x/2+i*y/2)=1/2^(x+i*y')-1/2^(x+i*y)=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2)) 1/2^(x/2+i*y/2+i*π/2)=-1/2^(x/2+i*y/2) (1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))*(1+(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2)))) (1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))=(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/4+i*y'/4)+1/2^(x/4+i*y/4+i*π/4)) 1/2^(x/4+i*y/4+i*π/4+i*π/2)=-1/2^(x/4+i*y/4+i*π/4) (1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+i*π/2))=(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4+i*π/2)) =(1/2^(x/4+i*y'/4)-1/2^(x/4+i*y/4+i*π/4))*(1/2^(x/8+i*y'/8)-1/2^(x/8+i*y/8+i*π/8+i*π/8))**(1/2^(x/8+i*y'/8)+1/2^(x/8+i*y/8+i*π/8+i*π/8)) 無限に分解していく際にx=1/2でないと都合が悪い可能性がある(1/2^nで実部を表せない)
308 名前:132人目の素数さん mailto:sage [2023/12/30(土) 22:03:36.06 ID:jsoLHdB8.net] 1/2^(x+i*y+i*π/ln2)=1/2^(x+i*y)*1/e^(i*π)=-1/2^(x+i*y) ゼータ関数をζ(x+i*y)≒1+1/2^(x+i*y)と簡略化する ζ(x+i*y’)とζ(x+i*y)を考えて差がほぼ0になる点を探す ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x+i*y')-1/2^(x+i*y))=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2)) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2-i*π/ln2^2+i*π/ln2)) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3-i*π/ln2^3+i*π/ln2^2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3*+i*π/ln2^3+i*π/ln2^2+i*π/ln2)) lim[n→∞] (1/2^(x/2^n+i*y'/2^n)-1/2^(x/2^n+i*y/2^n+i*π/ln2^n+i*π/ln2^(n-1)+i*π/ln2^(n-2)+i*π/ln2^(n-3)+・・・・+i*π/ln2))≒0 lim[n→∞]Σ[k=1→n]i*π/ln2^k=i*π/ln2^n+i*π/ln2^(n-1)+i*π/ln2^(n-2)+i*π/ln2^(n-3)+・・・・+i*π/ln2=i*π*∞ mod 2π nの値が無限でないときlim[n→m]Σ[k=1→n]i*π/ln2^kのときΣ[k=1→n]i*π/ln2^kはmod 2πされるため0から2πの値をとる A=2^’x/2^m)*e^(i*y') B=2^(x/2^m)*e^(i*y+lim[n→m]Σ[k=1→n]i*π/ln2^k) AとBの角度差がlim[n→m]Σ[k=1→n]i*π/ln2^kと可変する 長さが半分になり続ける2本のベクトルの間のベクトルの積とみなせるため 初期値が1/2でないと0に収束しない可能性がある (1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3-i*π/ln2^3+i*π/ln2^2))*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4*+i*π/ln2^4+i*π/ln2^3+i*π/ln2^2)) *(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4*+i*π/ln2^4+i*π/ln2^3+i*π/ln2^2+i*π/ln2))
309 名前:132人目の素数さん mailto:sage [2023/12/30(土) 22:26:56.47 ID:jsoLHdB8.net] ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2)) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+iπ/ln2) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2+iπ/ln2) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2) *(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2+iπ/ln2) =(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2) *(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4+iπ/ln2^4+iπ/ln2^3+iπ/ln2^2) *(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4+iπ/ln2^4+iπ/ln2^3+iπ/ln2^2+iπ/ln2) 2ベクトルの角度差がy'-y+lim[n→m]Σ[k=a→n]i*π/ln2^k)と可変する 長さは1/2^(x/2^m)になる 初期値が1/2でないと0に収束しない可能性がある
310 名前:132人目の素数さん mailto:sage [2023/12/31(日) 13:06:56.21 ID:ZQRjm/0R.net] ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化 ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y) |半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))| |半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) |半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))/2) |ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) +Π(2*1/3^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) +Π(2*1/4^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ← Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する
311 名前:132人目の素数さん mailto:sage [2023/12/31(日) 13:32:01.36 ID:ZQRjm/0R.net] ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化 ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y) |半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))| |半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) |半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))/2) |ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) +Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) +Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ← Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) =2^a*1/2^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) ←0に収束する必要がある Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) =2^a*1/3^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) ←0に収束する必要がある Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) =2^a*1/4^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ←0に収束する必要がある 2^a*1/2^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) 2^a*1/3^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) 2^a*1/4^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2)
312 名前:132人目の素数さん mailto:sage [2023/12/31(日) 14:52:49.83 ID:ZQRjm/0R.net] ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化 ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y) |半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))| |半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) |半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))*lnP(n)/2) |ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) +Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))*ln3/2) +Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))*ln4/2) ← Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) =2^a*1/2^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) ←0に収束する必要がある Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) =2^a*1/3^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))*ln3/2) ←0に収束する必要がある Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) =2^a*1/4^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))*ln4/2) ←0に収束する必要がある |ζ(x+i*y')-ζ(x+i*y)|=lim ΣΠ2^a*1/P(l)^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(l)^k))*lnP(l)/2)=0 これが収束するときにx=1/2しかない可能性がある
313 名前:132人目の素数さん mailto:sage [2023/12/31(日) 17:11:21.67 ID:ZQRjm/0R.net] |ζ(x+i*y')-ζ(x+i*y)|=1/2^(x+i*y')-1/2^(x+i*y)+1/3^(x+i*y')-1/3^(x+i*y)+1/4^(x+i*y')-1/4^(x+i*y) +5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2 1/2^(x+i*y')-1/2^(x+i*y)=2*1/2^x*sin((y'-y)*ln2/2)*e^(i*(π/2+(y'+y)*ln2/2)) 1/3^(x+i*y')-1/3^(x+i*y)=2*1/3^x*sin((y'-y)*ln3/2)*e^(i*(π/2+(y'+y)*ln3/2)) 1/4^(x+i*y')-1/4^(x+i*y)=2*1/4^x*sin((y'-y)*ln4/2)*e^(i*(π/2+(y'+y)*ln4/2)) 5^(1-x-i*y'))/(x-1+i*y')-5^(1-x-i*y)/(x-1+i*y)=5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1))) 5^(-(x+i*y'))/2-5^(-(x+i*y))/2=5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5)) ζ(x+i*y')-ζ(x+i*y)≒2*1/2^x*sin((y'-y)*ln2/2)*e^(i*(π/2+(y'+y)*ln2/2))+2*1/3^x*sin((y'-y)*ln3/2)*e^(i*(π/2+(y'+y)*ln3/2))+2*1/4^x*sin((y'-y)*ln4/2)*e^(i*(π/2+(y'+y)*ln4/2)) +5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1))) +5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5)) がx≠1/2のときy,y'をもたない(y≠y'>0)
314 名前:132人目の素数さん mailto:sage [2023/12/31(日) 17:28:27.05 ID:ZQRjm/0R.net] (1/2^(1/2+i*5π/(7*ln2))-1/2^(1/2+i*π/(7*ln2)))=(2*1/2^(1/2)*sin((4π/(7*ln2))*ln2/2))*e^(i*tan^(-1)((sin(π/7)/sqrt(2) - cos((3 π)/14)/sqrt(2))/(-sin((3 π)/14)/sqrt(2) - cos(π/7)/sqrt(2))) - i*π)
315 名前:132人目の素数さん mailto:sage [2023/12/31(日) 21:13:13.10 ID:ZQRjm/0R.net] (1/p(n)^(x+i*y')-1/p(n)^(x+i*y))=(2*1/p(n)^(x)*sin((y'-y)*lnp(n)/2)*e^(i*(arctan((-sin(y'*logp(n))+sin(ylogp(n)))/(cos(y'logp(n))-cos(ylogp(n))))+π))) (1/2^(x+i*y')-1/2^(x+i*y))=(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π))) (1/3^(x+i*y')-1/3^(x+i*y))=(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π))) (1/4^(x+i*y')-1/4^(x+i*y))=(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π))) 5^(1-x-i*y'))/(x-1+i*y')-5^(1-x-i*y)/(x-1+i*y)=5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1))) 5^(-(x+i*y'))/2-5^(-(x+i*y))/2=5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5)) ζ(x+i*y')-ζ(x+i*y)≒(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π))) +(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π))) +(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π))) +5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1))) +5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5)) がx≠1/2のときy,y'をもたない(y≠y'>0)
316 名前:132人目の素数さん mailto:sage [2023/12/31(日) 21:27:12.79 ID:ZQRjm/0R.net] ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないとの仮定が正しいとき(y'≠y>0) ζ(x+i*y')-ζ(x+i*y)≒(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π))) +(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π))) +(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π))) +5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1))) +5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))をA*e^(i*B)にかえて AがX≠1/2のとき0にならないことを証明すれば実部が1/2のみであることになる
317 名前:132人目の素数さん mailto:sage [2023/12/31(日) 22:15:02.20 ID:ZQRjm/0R.net] (1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+1/10^s+1/11^s-2/12^s+・・・ ((4/3)*cos((n-1)*2π/3)-1/3)=1,1,-2,1,1,-2,1,1,・・・ (1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s ζ(s)=1/(1-1/3^(s-1))*Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s ζ(1/2)=1/(1-√3)*Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s=-1.46=1/(1-√2)*Σ(-1)^(n-1)/n^s
318 名前:132人目の素数さん mailto:sage [2023/12/31(日) 22:24:09.99 ID:ZQRjm/0R.net] (1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+1/10^s+1/11^s-2/12^s+・・・ -2*cos((n)*2π/3))=1,1,-2,1,1,-2,1,1,・・・ (1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=Σ(-2*cos((n)*2π/3))/n^s ζ(s)=1/(1-1/3^(s-1))*Σ(-2*cos((n)*2π/3))/n^s ζ(1/2)=1/(1-√3)*Σ(-2*cos((n)*2π/3))/√n=-1.46=1/(1-√2)*Σ(-1)^(n-1)/√n
319 名前:132人目の素数さん mailto:sage [2023/12/31(日) 22:40:13.18 ID:ZQRjm/0R.net] (1-1/4^(s-1))ζ(s)=Σ1/n^(s)-4*Σ1/(4n)^s=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・ ((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1,・・・ ζ(s)=1/(1-1/4^(s-1))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))/n^s ζ(1/2)=1/(1-√4)*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))/√n=-1.46=1/(1-√2)*Σ(-1)^(n-1)/√n=1/(1-√3)*Σ(-2*cos((n)*2π/3))/√n
320 名前:132人目の素数さん mailto:sage [2023/12/31(日) 22:59:36.79 ID:ZQRjm/0R.net] ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=0 ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=0 ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=0 ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*(e^(i*-y*ln(n))/1^x-e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-e^(i*-y*ln(n))/4^x+・・・) ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*(e^(i*-y*ln(n))/1^x+e^(i*-y*ln(n))/2^x-2*e^(i*-y*ln(n))/3^x+e^(i*-y*ln(n))/4^x+・・・) ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*(e^(i*-y*ln(n))/1^x+e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-3*e^(i*-y*ln(n))/4^x+・・・) 1/(1-1/2^(x-1+i*y))←この項目を無視して (e^(i*-y*ln(n))/1^x-e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-e^(i*-y*ln(n))/4^x+・・・)だけ0になればいい 1,1,1,1,-5,1,1,1,1,-5,1,1,1,1,-5でも0 1,1,1,1,1,-6,1,1,1,1,1,-6,でも0 1がn回連続して-(n+1)が1回出る関数をf(X)にする Σf(X)*1/n^x*e^(i*-yln(n))=0になるときx=1/2のみになればいい
321 名前:132人目の素数さん mailto:sage [2024/01/01(月) 00:52:54.27 ID:7BKpZ/zg.net] ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-3/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0 ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2*1/3^s+3/4^s+1/5^s-2*1/6^s+1/7^s+3/8^s-2*1/9^s+・・・)=0 ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0 F(m)=1がm-1回連続し、-mが1回でる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・) ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ
322 名前:132人目の素数さん mailto:sage [2024/01/01(月) 01:14:02.39 ID:7BKpZ/zg.net] ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0 ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0 ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0 F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・) ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ] (1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0になるため Σ1/(2n-1)^s-Σ1/(2n)^s=0 (1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0になるため Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0 (1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0になるため Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0 (1/1^s+1/2^s+1/3^s+・・・+1/(m-1)^s-(m-1)/(m)^s+1/(m+1)^s+・・・+1/(2m-1)^s-(m-1)/(2m)^s+・・・)=0になるため Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s-(m-1)*Σ1/(mn)^s=0 Σ1/(mn)^s=1/(m-1)*(Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s)=0 ←s=1/2+i*yのときのみ成り立つことを証明すればいいため Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s=A*e^(i*B)としてx≠1/2のときA≠0を示せばいい
323 名前:132人目の素数さん mailto:sage [2024/01/01(月) 02:30:35.12 ID:7BKpZ/zg.net] Σ1/(2n-1)^s-Σ1/(2n)^s=0 ← Σ1/(4n-2)^s=Σ1/(4n)^s ↓に代入すると Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0 Σ1/(4n-2)^s=1/2×(Σ1/(4n-3)^s+Σ1/(4n-1)^s) x=1/2のときのみ成り立つことを示す
324 名前:132人目の素数さん mailto:sage [2024/01/01(月) 11:26:45.50 ID:7BKpZ/zg.net] ζ(-1+i*0)=1+1/2^(-1+i*0)+1/3^(-1+i*0)+1/4^(-1+i*0)+5^(1-(1/2+i*0))/(-1+i*0-1)+5^(-(-1+i*0))/2 ←0 +1/6*1/2!*5^(1-(-1+i*0)-2)*(-1+i*0) ←-1/12 -1/30*1/4!*5^(1-(-1+i*0)-4)*(-1+i*0)*(-1+i*0+1)*(-1+i*0+2) ←0 +1/42*1/6!*5^(1-(-1+i*0)-6)*(-1+i*0)*(-1+i*0+1)*(-1+i*0+2)*(-1+i*0+3)*(-1+i*0+4) ←0 +1/R2k ζ(-1+i*0)=Σn=1+2+3+4+5+・・・=-1/12
325 名前:132人目の素数さん mailto:sage [2024/01/01(月) 12:05:19.67 ID:7BKpZ/zg.net] Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0 Σ1/(6n-4)^s+Σ1/(6n-2)^s-2*Σ1/(6n)^s=0 Σ1/(6n-5)^s+Σ1/(6n-4)^s+*Σ1/(6n-3)^s+Σ1/(6n-2)^s+Σ1/(6n-1)^s-5*Σ1/(6n)^s=0 Σ1/(6n-5)^s+Σ1/(6n-3)^s+Σ1/(6n-1)^s-7*Σ1/(6n)^s=0 ←これもs=1/2+i*yのときのみ満たす
326 名前:132人目の素数さん mailto:sage [2024/01/01(月) 14:57:41.26 ID:7BKpZ/zg.net] Σ1/(n)^s =1/(1-1/(2)^(s-1))*Σ(-1)^(n-1)/(n)^s Σ1/(2n)^s =1/(1-1/(2)^(s-1))*Σ(-1)^(n-1)/(2n)^s Σ1/(2n-1)^s =1/(1-1/(2)^(s-1))*(Σ(-1)^(n-1)/(n)^s-Σ(-1)^(n-1)/(2n)^s) Σ1/(2n-1)^s =(1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-Σ(n=1〜∞) (-1)^(n-1)/(2n)^(s))) Σ1/(2n-1)^s =1+1/√3+1/√5+1/√7+・・・≒-0.42
327 名前:132人目の素数さん mailto:sage [2024/01/01(月) 15:15:03.85 ID:7BKpZ/zg.net] (1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)=(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s) =Σ(n=1〜∞) 1/(3n)^(s)-2*Σ(n=1〜∞) 1/(6n)^(s)=Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s) Σ(n=1〜∞) 1/(3n)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s) Σ(n=1〜∞) 1/(mn)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s)=ζ(s)/m^s ←合成数mnのみのゼータ関数は収束する
328 名前:132人目の素数さん mailto:sage [2024/01/01(月) 15:29:41.02 ID:7BKpZ/zg.net] Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0 Σ1/(n)^s-Σ1/(3n)^s=Σ1/(3n-2)^s+Σ1/(3n-1)^s Σ(n=1〜∞) 1/(3n-2)^(s)+Σ(n=1〜∞) 1/(3n-1)^(s)=1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)) 1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-3*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))=0 (Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-3*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))=0 ←s=1/2+i*yのときのみ満たす
329 名前:132人目の素数さん mailto:sage [2024/01/01(月) 15:34:52.20 ID:7BKpZ/zg.net] (Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 3*(Σ(n=1〜∞) (-1)^(n-1)/(3n)^(1/2+i*14.1347))=6.82869×10^-6 - 0.000128656 i ←ほぼ0になる
330 名前:132人目の素数さん mailto:sage [2024/01/01(月) 15:40:54.11 ID:7BKpZ/zg.net] (Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*y)) - m*(Σ(n=1〜∞) (-1)^(n-1)/(mn)^(1/2+i*y)) ←1/2+i*yがゼロ点のときmに整数を入れるとほぼ0になる 1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s) ←1/(1-1/2^(s-1))は値を補正する項なもののゼロ点の時無視できるため (Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 4*(Σ(n=1〜∞) (-1)^(n-1)/(4n)^(1/2+i*14.1347))=0.0000654354 + 0.0000182958 i (Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 5*(Σ(n=1〜∞) (-1)^(n-1)/(5n)^(1/2+i*14.1347))=-0.0000801562 - 0.000119567 i (Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 125*(Σ(n=1〜∞) (-1)^(n-1)/(125n)^(1/2+i*14.1347))=-0.000385263 + 0.000318602 i
331 名前:132人目の素数さん mailto:sage [2024/01/01(月) 20:57:48.03 ID:7BKpZ/zg.net] (Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347251417346937904572519835624702707842)) - 10000*(Σ(n=1〜∞) (-1)^(n-1)/(10000n)^(1/2+i*14.1347251417346937904572519835624702707842)) =-0.×10^-38 + 0.×10^-38 i ←ゼロ点の精度が上がるほど0に近づく
332 名前:132人目の素数さん mailto:sage [2024/01/01(月) 22:23:45.62 ID:7BKpZ/zg.net] ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^s)=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0 ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^s)=1/(1-1/3^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0 ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^s)=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0 F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・) (Σ(n=1〜∞)(-1)^(n-1)*1/n^s))=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0 (Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^s))=(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0 (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^s))=(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0 (Σ(n=1〜∞)((F(m-1))*1/n^s))=(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)=0 m-1の値ごとに分子の数が異なるものの、ゼロ点のときすべて0に収束する (Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・) (Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・) (Σ(n=1〜∞)((F(m-1))*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)
333 名前:132人目の素数さん mailto:sage [2024/01/01(月) 22:43:59.96 ID:7BKpZ/zg.net] (Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・) (Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))==(Σ(n=1〜∞)1/(2n-1)^s)-(Σ(n=1〜∞)1/(2n)^s) (1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・) =(Σ(n=1〜∞)1/(n)^s)-2*(Σ(n=1〜∞)1/(2n)^s)=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-2*(Σ(n=1〜∞)(-1)^(n-1)/(2n)^s))
334 名前:132人目の素数さん mailto:sage [2024/01/01(月) 23:02:03.66 ID:7BKpZ/zg.net] mに任意の整数を入れ、sがゼロ点の時 (Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-m*(Σ(n=1〜∞)(-1)^(n-1)/(mn)^s)=0になる←(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)を正規化 (Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-(Σ(n=1〜∞)(-1)^(n-1)/(m^(1-1/s)*n)^s) m^(1-1/s)*nのmとn(次数1)の次数が等しくなるためにはs=1/2+i*yである必要がある (1-1/(1/2+i*y))=(2 y + i)/(2 y - i) ←|(2 y + i)/(2 y - i)|=1のため次数1
335 名前:132人目の素数さん mailto:sage [2024/01/01(月) 23:53:19.63 ID:7BKpZ/zg.net] zetazero(k)=k番目の非自明なゼロ点 m、kにどの整数を入れても0になる (Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(k))-(Σ(n=1〜∞)(-1)^(n-1)/(m^(1-1/zetazero(k))*n)^zetazero(k))=0 (Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(1))-(Σ(n=1〜∞)(-1)^(n-1)/(2^(1-1/zetazero(1))*n)^zetazero(1))=0 (Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(2))-(Σ(n=1〜∞)(-1)^(n-1)/(31^(1-1/zetazero(2))*n)^zetazero(2))=0 (Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(12))-(Σ(n=1〜∞)(-1)^(n-1)/(1013^(1-1/zetazero(12))*n)^zetazero(12))=0 (Σ(n=1〜∞)(-1)^(n-1)/(n)^(1/10+zetazero(12)))-(Σ(n=1〜∞)(-1)^(n-1)/(1013^(1-1/(1/10+zetazero(12)))*n)^(1/10+zetazero(12)))≒-4.49761 + 2.32023 i ←1/2からずれるとゼロ点にならない
336 名前:132人目の素数さん mailto:sage [2024/01/02(火) 00:33:09.00 ID:xRdffKCJ.net] x+i*y=非自明なゼロ点 mにどの整数を入れても0になる (Σ(n=1〜∞)(-1)^(n-1)/(m^((x-1+i*y)/(x+i*y))*n)^(x+i*y))=0 Σ(n=1〜∞)(-1)^(n-1)/(m^((s-1)/(s))*1)^(s)=1/(m^((s-1)/(s))*1)^(s)-1/(m^((s-1)/(s))*2)^(s)+1/(m^((s-1)/(s))*3)^(s)-1/(m^((s-1)/(s))*4)^(s)+・・・ m^((s-1)/(s))=e^(ln(m)*(s-1)/(s)) ←|(s-1)/(s)|がx≠1/2のときyにより変動してしまうx=1/2のときy≠i/2を除き1で一定する (Σ(n=1〜∞)(-1)^(n-1)/(m^((x-1+i*y)/(x+i*y))*n)^(x+i*y))の分母の長さが変動してしまうため0に収束しなくなる
337 名前:132人目の素数さん mailto:sage [2024/01/02(火) 00:36:21.02 ID:xRdffKCJ.net] Σ1/n^s=1/1^s+1/2^s+1/3^s+1/4^s+・・・←x≠1/2のときyが変動することでxに影響を与える可能性がある(分母の大きさが変動する可能性がある)
338 名前:132人目の素数さん mailto:sage [2024/01/03(水) 00:33:11.16 ID:mP/SslTt.net] (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s)) =1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s))) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・ (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・ 1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46 (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・ 1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.47935388・・・
339 名前:132人目の素数さん mailto:sage [2024/01/03(水) 00:42:04.36 ID:mP/SslTt.net] (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s)) =1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s))) =-Li_(s)(-i) - Li_(s)(i) - (2^(1-s) - 1) ζ(s) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・ (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・ 1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46 =-Li_(1/2)(-i) - Li_(1/2)(i) - (2^(1-1/2) - 1) ζ(1/2) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・ 1/(1-1/2^(1/3-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/3)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/3)))=1.47935388・・・ =-Li_(1/3)(-i) - Li_(1/3)(i) - (2^(1-1/3) - 1) ζ(1/3) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/4))=1.487=1/1^(1/4)+1/2^(1/4)+1/3^(1/4)-3/4^(1/4)+1/5^(1/4)+1/6^(1/4)+・・・ 1/(1-1/2^(1/4-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/4))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/4)))=1.487020296・・・ =-Li_(1/4)(-i) - Li_(1/4)(i) - (2^(1-1/4) - 1) ζ(1/4)
340 名前:132人目の素数さん mailto:sage [2024/01/03(水) 00:46:22.06 ID:mP/SslTt.net] (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s)) =1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s))) =-Li_(s)(-i) - Li_(s)(i) - (2^(1-s) - 1) ζ(s) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・ (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・ 1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46 =-Li_(1/2)(-i) - Li_(1/2)(i) - (2^(1-1/2) - 1) ζ(1/2) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・ 1/(1-1/2^(1/3-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/3)))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/3)))=1.47935388・・・ =-Li_(1/3)(-i) - Li_(1/3)(i) - (2^(1-1/3) - 1) ζ(1/3) (Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/4))=1.487=1/1^(1/4)+1/2^(1/4)+1/3^(1/4)-3/4^(1/4)+1/5^(1/4)+1/6^(1/4)+・・・ 1/(1-1/2^(1/4-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/4))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/4)))=1.487020296・・・ =-Li_(1/4)(-i) - Li_(1/4)(i) - (2^(1-1/4) - 1) ζ(1/4)
341 名前:132人目の素数さん mailto:sage [2024/01/03(水) 00:55:45.53 ID:mP/SslTt.net] F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・) m=5のとき1,1,1,1,-4のとき (Σ(n=1〜∞)(F(4))*1/n^(s)) =1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^s)) (Σ(n=1〜∞)(F(4))*1/n^(1/2))=1.805=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)+1/4^(1/2)-4/5^(1/2)+1/6^(1/2)+・・・ =1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^(1/2)))=1.805097444・・・ (Σ(n=1〜∞)(F(m-1))*1/n^(1/2))=1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(1/2))) (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s)))
342 名前:132人目の素数さん mailto:sage [2024/01/03(水) 01:01:34.83 ID:mP/SslTt.net] F(2)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・ F(3)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・ F(4)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・ F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・) (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s)))
343 名前:132人目の素数さん mailto:sage [2024/01/03(水) 01:14:29.37 ID:mP/SslTt.net] (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s))) =1/(1-1/m^(s-1))*(((Σ(n=1〜∞)F(m-1)*1/n^(s)))-m*(Σ(n=1〜∞)F(m-1)*1/(mn)^(s))) 1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^(1/2))) =1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(1/2)))-5*(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/(5n)^(1/2))) =(sqrt(5) (sqrt(2) - 1) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/(1 - sqrt(2))≈1.8050974441369647866219120691103300362558013984562195806889193118468626278195508722313989372865636 =(-Li_(1/2)(-(-1)^(1/3)) - Li_(1/2)((-1)^(2/3)) + sqrt(5) (Li_(1/2)(-(-1)^(1/3)) + Li_(1/2)((-1)^(2/3))))/(1 - sqrt(3))≈1.805097444136964786621912069110330036255801398456219580688919311846862627819550872231398937286564 + 0.×10^-96 i
344 名前:132人目の素数さん mailto:sage [2024/01/03(水) 01:25:56.12 ID:mP/SslTt.net] F(0)=0=0,0,0,0,0,0,0,0,・・・ F(1)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・ F(2)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・ F(3)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・ F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・) (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s))) =1/(1-1/m^(s-1))*(((Σ(n=1〜∞)F(m-1)*1/n^(s)))-m*(Σ(n=1〜∞)F(m-1)*1/(mn)^(s))) m=1のとき (Σ(n=1〜∞)(F(0))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-1*(Σ(n=1〜∞)(-1)^(n-1)*1/(1*n)^(s)))=0 =1/(1-1/1^(s-1))*(((Σ(n=1〜∞)F(0)*1/n^(s)))-1*(Σ(n=1〜∞)F(0)*1/(1*n)^(s)))=0
345 名前:132人目の素数さん mailto:sage [2024/01/03(水) 23:43:59.78 ID:mP/SslTt.net] a^n+b^n≠c^n (a,b,c,は互いに素) n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる x1=x2=x3にならない(x1=x2=x3=0を除く) e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n)) e^(i*2π*(x1/(3*5)^3+x2/(2*5)^3))=e^(i*2π*(x3/(2*3)^3)) x1 = -8, x2 = 7, x3 = 1 x1 = 0, x2 = 0, x3 = 0 x1 = 8, x2 = -7, x3 = -1 e^(i*2π*(8/(3*5)^3-7/(2*5)^3))=e^(i*2π*(-1/(2*3)^3))=e^(-(i π)/108) e^(i*2π*(x1/(5*7)^3+x2/(2*7)^3))=e^(i*2π*(x3/(2*5)^3)) x1 = -8, x2 = 6, x3 = 2 x1 = -4, x2 = 3, x3 = 1 x1 = 0, x2 = 0, x3 = 0 x1 = 4, x2 = -3, x3 = -1 x1 = 8, x2 = -6, x3 = -2
346 名前:132人目の素数さん mailto:sage [2024/01/04(木) 00:06:08.79 ID:HQkE/6B8.net] e^(i*2π*(a/(2)^3+b/(3)^3+c/(5)^3))=e^(i*2π*(x3/(2*3*5)^3)) 1>cos(2π*(a/(2)^3+b/(3)^3+c/(5)^3))>cos(2π*(7^2/(2*3*5)^3))のとき cos(2π*(7^2/(2*3*5)^3))>cos(2π*(a/(2)^3+b/(3)^3+c/(5)^3))>cos(2π*(7*11/(2*3*5)^3)) x3=素数 a≠2,b≠3,c≠5 e^(i*2π*(x1/(3*5^2)^3+x2/(2*5^2)^3))=e^(i*2π*(x3/(2*3*5)^3)) x1 = 8, x2 = -7, x3 = -1 e^(i*2π*(8/(3*5^2)^3-7/(2*5^2)^3))=e^(i*2π*(1/(2*3*5)^3)) e^(i*2π*(9/(3*5^2)^3-7/(2*5^2)^3))=e^(i*2π*(13/(2*3*5)^3)) e^(i*2π*(8/(3*5^2)^3-5/(2*5^2)^3))=e^(i*2π*(-71/(2*3*5)^3)) ←ずらすのが容易になる
347 名前:132人目の素数さん mailto:sage [2024/01/04(木) 00:56:35.97 ID:HQkE/6B8.net] a^n+b^n≠c^n (a,b,c,は互いに素) n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる x1=x2=x3にならない(x1=x2=x3=0を除く) e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n)) ←が成り立つとするx1≠x2≠x3 x3 = -(i (a b)^n (log(exp(2 i π (a c)^(-n) (b c)^(-n) (x1 (a c)^n + x2 (b c)^n))) + 2 i π c_1))/(2 π) e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n+(x1-x3)/(a*b)^n))=e^(i*2π*(x3/(a*b)^n+(x1-x3)/(a*b)^n)))=e^(i*2π*(x1/(a*b)^n)) x2/(a*c)^n+(x1-x3)/(a*b)^n≠x1/(a*c)^nであることを示せばいい x2/(a*c)^n+(x1-(-(i (a b)^n (log(exp(2 i π (a c)^(-n) (b c)^(-n) (x1 (a c)^n + x2 (b c)^n))) + 2 i π c_1))/(2 π)))/(a*b)^n=x1/(a*c)^n x1 (a b)^(-n) - x1 (b c)^(-n) - c_1 = x1 (a c)^(-n) (a b)^n (a c)^n Subscript["c", 1] == (a c)^n x1 + ((a b)^n (-2 Pi x1 + 2 Pi x2 + I (a c)^n Log[E^(((2 I) Pi x1)/(b c)^n + ((2 I) Pi x2)/(a c)^n)]))/(2 Pi)←n>=3以上のときc1≠0のため x2/(a*c)^n+(x1-x3)/(a*b)^n≠x1/(a*c)^nになるためa^n+b^n≠c^n
348 名前:132人目の素数さん mailto:sage [2024/01/04(木) 01:13:55.61 ID:HQkE/6B8.net] (3 4)^2 (3 5)^2 *C = (3 5)^2 x1 + ((3 4)^2 (-2 Pi x1 + 2 Pi x2 + I (3 5)^2 Log[E^(((2 I) Pi x1)/(4 5)^2 + ((2 I) Pi x2)/(3 5)^2)]))/(2 Pi) 32400 C = (16200 i log(e^((i π x1)/200 + (2 i π x2)/225)))/π + 81 x1 + 144 x2=0 ←n=2 a=3,b=4,c=5のときC=0のため3^2+4^2=5^2 (3 4)^3 (3 5)^3 *C = (3 5)^3 x1 + ((3 4)^3 (-2 Pi x1 + 2 Pi x2 + I (3 5)^3 Log[E^(((2 I) Pi x1)/(4 5)^3 + ((2 I) Pi x2)/(3 5)^3)]))/(2 Pi) 5832000 C - 918 x1 = 0 ←n=3 a=3,b=4,c=5のときC≠0のため3^3+4^3≠5^3
349 名前:132人目の素数さん mailto:sage [2024/01/04(木) 01:42:18.75 ID:HQkE/6B8.net] n>=3のときC=0を満たす、x1=x2、a,b,c,の整数が存在しない C=(a c)^n x1 + ((a b)^n (-2 Pi x1 + 2 Pi x2 + I (a c)^n Log[E^(((2 I) Pi x1)/(b c)^n + ((2 I) Pi x2)/(a c)^n)]))/(2 Pi) =((a c)^n (2 π x1 + i (a b)^n log(e^(2 i π x1 ((a c)^(-n) + (b c)^(-n))))))/(2 π) =(2 π + i (a b)^n log(e^(2 i π ((a c)^(-n) + (b c)^(-n))))) ←が0になればa^n+b^n=c^nを満たす x1=1にする (2 π + i (3 4)^2 log(e^(2 i π ((3 5)^(-2) + (4 5)^(-2)))))=0 のためn=2 のときa=3 b=4 c=5 (2 π + i (3 4)^3 log(e^(2 i π ((3 5)^(-3) + (4 5)^(-3)))))=(68 π)/125のため3^3+4^3≠5^3
350 名前:132人目の素数さん mailto:sage [2024/01/04(木) 01:46:40.11 ID:HQkE/6B8.net] f(n)=(2 π + i (a b)^n log(e^(2 i π ((a c)^(-n) + (b c)^(-n))))) f(n)のnが3より大きいときf(n)=0をみたすa,b,cの格子点を通らないため(同時に整数にならないため) n>=3のときa^n+b^n≠c^n
351 名前:132人目の素数さん mailto:sage [2024/01/05(金) 22:47:47.72 ID:J9agiAXK.net] 1/(1-1/2^(1/2-1))*1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(1/2)))-2*(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/(2n)^(1/2)))=-1.46 (-Li_(1/2)(-(-1)^(1/3)) - Li_(1/2)((-1)^(2/3)) + sqrt(2) (Li_(1/2)(-(-1)^(1/3)) + Li_(1/2)((-1)^(2/3))))/((1 - sqrt(2)) (1 - sqrt(3)))≈-1.46035 + 0 i 1/(1-1/2^(1/2-1))*1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-3*(Σ(n=1〜∞)(-1)^(n-1)*1/(3n)^(1/2)))=-1.46 (sqrt(3) (sqrt(2) - 1) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/((1 - sqrt(2)) (1 - sqrt(3)))≈-1.46035 1/(1-1/2^(1/2-1))^2*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-2*(Σ(n=1〜∞)(-1)^(n-1)*1/(2n)^(1/2)))=-1.46 (-(sqrt(2) - 2) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/(1 - sqrt(2))^2≈-1.46035
352 名前:132人目の素数さん mailto:sage [2024/01/06(土) 01:31:00.08 ID:MvCtGzfL.net] -((PolyLog[1/2, -(-1)^(1/3)] + PolyLog[1/2, (-1)^(2/3)]))/( (1 - Sqrt[3])) -((PolyLog[1/2, -(-1)^(1/3)] + PolyLog[1/2, (-1)^(2/3)]))/( (1 - Sqrt[3]))=1/( (1 - Sqrt[3]))*(∑(n=1〜∞)-(e^(n*i*4π/3)+e^(n*i*2π/3))/n^(1/2))=-1.46 -((PolyLog[-1, -(-1)^(1/3)] + PolyLog[-1, (-1)^(2/3)]))/( (1 -1/3^(-1-1)))=1/( (1 -1/3^(-1-1)))*(∑(n=1〜∞)-(e^(n*i*4π/3)+e^(n*i*2π/3))/n^(-1))=-1/12 + 0 i x^2+x+1=0 x=cos(2pi*n/3)+i*sin(2pi*n/3) x^4+x^3+x^2+x+1=0 x=cos(2pi*n/5)+i*sin(2pi*n/5) x^6+x^5+x^4+x^3+x^2+x+1=0 x=cos(2pi*n/7)+i*sin(2pi*n/7)
353 名前:132人目の素数さん mailto:sage [2024/01/06(土) 17:33:59.67 ID:MvCtGzfL.net] e^(iπ)+1=0 e^(i*4π/3)+e^(i*2π/3)+1=0 e^(i*6π/4)+e^(i*4π/4)+e^(i*2π/4)+1=0 e^(i*8π/5)+e^(i*6π/5)+e^(i*4π/5)+e^(i*2π/5)+1=0 e^(iπ)=Σ(k=1〜n-1)e^(i*2π*k/n) (1<=k<=n-1) e^(iπ)=Σ(k=1〜2*3*5-1)e^(i*2π*k/(2*3*5))
354 名前:132人目の素数さん mailto:sage [2024/01/06(土) 20:51:12.58 ID:MvCtGzfL.net] 1,2,3,4,5,6, 1,5 2,3,4,6 e^(i2π)=e^(i*2π*1/(2*3))+e^(i*2π*5/(2*3)) 2,3,4,6 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 1,7,11,13,17,19,23,29 2,3,4,5,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30, e^(iπ)=e^(i*2π*1/(2*3*5))+e^(i*2π*7/(2*3*5))+e^(i*2π*11/(2*3*5))+e^(i*2π*13/(2*3*5))+e^(i*2π*17/(2*3*5))+e^(i*2π*19/(2*3*5))+e^(i*2π*23/(2*3*5))+e^(i*2π*29/(2*3*5))
355 名前:132人目の素数さん mailto:sage [2024/01/06(土) 21:01:35.48 ID:MvCtGzfL.net] 2^2*3*5 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60 0=e^(i*2π*1/(4*3*5))+e^(i*2π*7/(4*3*5))+e^(i*2π*11/(4*3*5))+e^(i*2π*13/(4*3*5))+e^(i*2π*17/(4*3*5))+e^(i*2π*19/(4*3*5))+e^(i*2π*23/(4*3*5))+e^(i*2π*29/(4*3*5)) ←5.33i +e^(i*2π*31/(4*3*5))+e^(i*2π*37/(4*3*5))+e^(i*2π*41/(4*3*5))+e^(i*2π*43/(4*3*5))+e^(i*2π*47/(4*3*5))+e^(i*2π*49/(4*3*5))+e^(i*2π*53/(4*3*5))+e^(i*2π*59/(4*3*5)) ←-5.33i (2^2*3*5)未満の2,3,5,を素因数に持たない数をXとおく Xに若い数から順に入れて足すと0になる 0=Σe^(i*2pi*(X/(2^2*3*5))
356 名前:132人目の素数さん mailto:sage [2024/01/06(土) 21:27:13.46 ID:MvCtGzfL.net] (2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく Xに若い数から順に入れて足すと0になる 0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) a=3 b=1 c=1のとき 0になる 0=e^(i*2π*1/(8*3*5))+e^(i*2π*7/(8*3*5))+e^(i*2π*11/(8*3*5))+e^(i*2π*13/(8*3*5))+e^(i*2π*17/(8*3*5))+e^(i*2π*19/(8*3*5))+e^(i*2π*23/(8*3*5))+e^(i*2π*29/(8*3*5)) ←(5.132689822507279173528306376440040126225812904101791511905651606... + 5.132689822507279173528306376440040126225812904101791511905651606... i) +e^(i*2π*31/(8*3*5))+e^(i*2π*37/(8*3*5))+e^(i*2π*41/(8*3*5))+e^(i*2π*43/(8*3*5))+e^(i*2π*47/(8*3*5))+e^(i*2π*49/(8*3*5))+e^(i*2π*53/(8*3*5))+e^(i*2π*59/(8*3*5)) ←(-5.132689822507279173528306376440040126225812904101791511905651606... + 5.132689822507279173528306376440040126225812904101791511905651606... i) +e^(i*2π*61/(8*3*5))+e^(i*2π*67/(8*3*5))+e^(i*2π*71/(8*3*5))+e^(i*2π*73/(8*3*5))+e^(i*2π*77/(8*3*5))+e^(i*2π*79/(8*3*5))+e^(i*2π*83/(8*3*5))+e^(i*2π*89/(8*3*5)) ←(-5.132689822507279173528306376440040126225812904101791511905651606... - 5.132689822507279173528306376440040126225812904101791511905651606... i) +e^(i*2π*91/(8*3*5))+e^(i*2π*97/(8*3*5))+e^(i*2π*101/(8*3*5))+e^(i*2π*103/(8*3*5))+e^(i*2π*107/(8*3*5))+e^(i*2π*109/(8*3*5))+e^(i*2π*113/(8*3*5))+e^(i*2π*119/(8*3*5)) ←(5.132689822507279173528306376440040126225812904101791511905651606... - 5.132689822507279173528306376440040126225812904101791511905651606... i)
357 名前:132人目の素数さん mailto:sage [2024/01/06(土) 21:31:31.07 ID:MvCtGzfL.net] 1<=A<=2^a*3^b*5^c 0=Σe^(i*2pi*(A/(2^a*3^b*5^c)) ←全方位を足すことになるため0に収束する (2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく Xに若い数から順に入れて足すと0になる 0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) になるため Σe^(i*2pi*(A/(2^a*3^b*5^c))-Σe^(i*2pi*(X/(2^a*3^b*5^c)=0 ←2,3,5,を素因数に持つ数の分子のみを足しても0になる
358 名前:132人目の素数さん mailto:sage [2024/01/06(土) 22:46:01.52 ID:MvCtGzfL.net] (2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく Xに若い数から順に入れて足すと0になる 0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) a=1 b=2 c=1のとき 0になる 0=e^(i*2π*1/(2*9*5))+e^(i*2π*7/(2*9*5))+e^(i*2π*11/(2*9*5))+e^(i*2π*13/(2*9*5))+e^(i*2π*17/(2*9*5))+e^(i*2π*19/(2*9*5))+e^(i*2π*23/(2*9*5))+e^(i*2π*29/(2*9*5)) ←3.3587707643070619775468762345+5.817561614756781915987196652591 i +e^(i*2π*31/(2*9*5))+e^(i*2π*37/(2*9*5))+e^(i*2π*41/(2*9*5))+e^(i*2π*43/(2*9*5))+e^(i*2π*47/(2*9*5))+e^(i*2π*49/(2*9*5))+e^(i*2π*53/(2*9*5))+e^(i*2π*59/(2*9*5)) ←-6.7175415286141239550937524691565827376 +e^(i*2π*61/(2*9*5))+e^(i*2π*67/(2*9*5))+e^(i*2π*71/(2*9*5))+e^(i*2π*73/(2*9*5))+e^(i*2π*77/(2*9*5))+e^(i*2π*79/(2*9*5))+e^(i*2π*83/(2*9*5))+e^(i*2π*89/(2*9*5)) 3.3587707643070619775468762345-5.817561614756781915987196652591 i
359 名前:132人目の素数さん mailto:sage [2024/01/07(日) 00:36:17.90 ID:SsbMX1Ts.net] 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 43個 121, 143, 169, 187, 209 ←11以上の素数の積 43+5=48=(2^1-2^0)*(3^1-3^0)*(5^1-5^0)*(7^1-7^0) e^(i*2π*1/(210))+e^(i*2π*11/(210))+e^(i*2π*13/(210))+e^(i*2π*17/(210))+e^(i*2π*19/(210))+e^(i*2π*23/(210))+e^(i*2π*29/(210))+e^(i*2π*31/(210)) +e^(i*2π*37/(210))+e^(i*2π*41/(210))+e^(i*2π*43/(210))+e^(i*2π*47/(210))+e^(i*2π*53/(210))+e^(i*2π*59/(210))+e^(i*2π*61/(210))+e^(i*2π*67/(210)) +e^(i*2π*71/(210))+e^(i*2π*73/(210))+e^(i*2π*79/(210))+e^(i*2π*83/(210))+e^(i*2π*89/(210))+e^(i*2π*97/(210))+e^(i*2π*101/(210))+e^(i*2π*103/(210)) +e^(i*2π*107/(210))+e^(i*2π*109/(210))+e^(i*2π*113/(210))+e^(i*2π*121/(210))+e^(i*2π*127/(210))+e^(i*2π*131/(210))+e^(i*2π*137/(210))+e^(i*2π*139/(210)) +e^(i*2π*143/(210))+e^(i*2π*149/(210))+e^(i*2π*151/(210))+e^(i*2π*157/(210))+e^(i*2π*163/(210))+e^(i*2π*167/(210))+e^(i*2π*169/(210))+e^(i*2π*173/(210)) +e^(i*2π*179/(210))+e^(i*2π*181/(210))+e^(i*2π*187/(210))+e^(i*2π*191/(210))+e^(i*2π*193/(210))+e^(i*2π*197/(210))+e^(i*2π*199/(210))+e^(i*2π*209/(210))
360 名前:132人目の素数さん mailto:sage [2024/01/07(日) 00:36:24.60 ID:SsbMX1Ts.net] 6.606151730956146027474643765229636509246755471355322415357773585+3.955768916487488063421523135775796876846008211413418631075128838i 0.348729119554712206479635492783055741844634253202227559498670175+7.63835963801662783628638751362732226626973708618413688115736445i -6.45488085051085823395427925801269225109138972455754997485644376+3.85884286000217691319461868951235274934874481657572124586680902i -6.45488085051085823395427925801269225109138972455754997485644376-3.85884286000217691319461868951235274934874481657572124586680902i 0.348729119554712206479635492783055741844634253202227559498670175-7.63835963801662783628638751362732226626973708618413688115736445i 6.606151730956146027474643765229636509246755471355322415357773585-3.955768916487488063421523135775796876846008211413418631075128838i =0.5 (2^a*3^b*5^c*7^d)未満の2,3,5,7を素因数に持たない数をXとおく Xに若い数から順に入れて足すと1/2になる 1/2=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d)) a=1 b=1 c=1 d=1のとき 1/2になる
361 名前:132人目の素数さん mailto:sage [2024/01/07(日) 01:07:11.84 ID:SsbMX1Ts.net] 2^a*3^b 2^1*3^1 1=e^(i*2π*1/(6))+e^(i*2π*5/(6)) 2^1*3^2 1,5,7,11,13,17 0=e^(i*2π*1/(18))+e^(i*2π*5/(18))+e^(i*2π*7/(18))+e^(i*2π*11/(18))+e^(i*2π*13/(18))+e^(i*2π*17/(18)) 2^2*3^1 1,5,7,11 0=e^(i*2π*1/(12))+e^(i*2π*5/(12))+e^(i*2π*7/(12))+e^(i*2π*11/(12)) 2^2*3^2 1,5,7,11,13,17,19,23,25,29,31,35 0=e^(i*2π*1/(36))+e^(i*2π*5/(36))+e^(i*2π*7/(36))+e^(i*2π*11/(36)) +e^(i*2π*13/(36))+e^(i*2π*17/(36))+e^(i*2π*19/(36))+e^(i*2π*23/(36)) +e^(i*2π*25/(36))+e^(i*2π*29/(36))+e^(i*2π*31/(36))+e^(i*2π*35/(36)) (2^a*3^b)未満の2,3を素因数に持たない数をXとおく Xに若い数から順に入れて足すと0になる(a=1,b=1のときを除く) 0=Σe^(i*2pi*(X/(2^a*3^b)) a=1 b=2のとき 0になる
362 名前:132人目の素数さん mailto:sage [2024/01/07(日) 01:13:40.64 ID:SsbMX1Ts.net] (2^a*3^b)未満の2,3を素因数に持たない数をXとおく Xに若い数から順に入れて足すと1か0になる 1=Σe^(i*2pi*(X/(2^1*3^1))(a=1,b=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b)) (a>1またはb>1のとき) (2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく Xに若い数から順に入れて足すと-1か0になる -1=Σe^(i*2pi*(X/(2^1*3^1*5^c))(a=1,b=1,c=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) (a>1またはb>1またはc>1のとき) (2^a*3^b*5^c*7^d)未満の2,3,5,7を素因数に持たない数をXとおく Xに若い数から順に入れて足すと1/2か0になる 1/2=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d)) (a>1またはb>1またはc>1またはd>1のとき) (2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく Xに若い数から順に入れて足すと-1/2か0になる -1/2=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき)
363 名前:132人目の素数さん mailto:sage [2024/01/07(日) 12:52:06.49 ID:SsbMX1Ts.net] e^(i*2π*(x/2^2+y/3+z/5)) ←x≠2*n1,y≠3*n2,z≠5*n3 cos(2π*(X/(2^2*3*5))) > cos(2π*(49/(2^2*3*5)))のときX=素数(Xがとりうる数は2,3,5を素因数に持たず、2^2*3*5未満の数 (2^2-2^1)*(3^1-3^0)*(5^1-5^0)=16個(1を含む)) (2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく Xに若い数から順に入れて足すと-1か0になる -1=Σe^(i*2pi*(X/(2^1*3^1*5^c))(a=1,b=1,c=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) (a>1またはb>1またはc>1のとき) 0=e^(i*2π*1/(4*3*5))+e^(i*2π*7/(4*3*5))+e^(i*2π*11/(4*3*5))+e^(i*2π*13/(4*3*5))+e^(i*2π*17/(4*3*5))+e^(i*2π*19/(4*3*5))+e^(i*2π*23/(4*3*5))+e^(i*2π*29/(4*3*5)) +e^(i*2π*31/(4*3*5))+e^(i*2π*37/(4*3*5))+e^(i*2π*41/(4*3*5))+e^(i*2π*43/(4*3*5))+e^(i*2π*47/(4*3*5))+e^(i*2π*49/(4*3*5))+e^(i*2π*53/(4*3*5))+e^(i*2π*59/(4*3*5))
364 名前:132人目の素数さん [2024/01/07(日) 16:03:11.88 ID:SsbMX1Ts.net] P(n)=n番目の素数 (Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1)≒P(n)^2未満の素数の個数(誤差±1弱) (1*2)*5^2/(2*3)+1 =9.33 (1*2*4)*7^2/(2*3*5)+2 =15.06 (1*2*4*6)*11^2/(2*3*5*7)+3 =30.65 (1*2*4*6*10)*13^2/(2*3*5*7*11)+4 =39.11 (1*2*4*6*10*12)*17^2/(2*3*5*7*11*13)+5 =60.43 (1*2*4*6*10*12*16)*19^2/(2*3*5*7*11*13*17)+6 =71.16
365 名前:132人目の素数さん mailto:sage [2024/01/07(日) 16:11:50.79 ID:SsbMX1Ts.net] P(n)=n番目の素数 (Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1)≒P(n)^2未満の素数の個数(誤差±1弱) (1*2)*5^2/(2*3)+1 =9.33 (5^2未満の素数の個数=9個) (1*2*4)*7^2/(2*3*5)+2 =15.06 (7^2未満の素数の個数=15個) (1*2*4*6)*11^2/(2*3*5*7)+3 =30.65 (11^2未満の素数の個数=30個) (1*2*4*6*10)*13^2/(2*3*5*7*11)+4 =39.11 (13^2未満の素数の個数=39個) (1*2*4*6*10*12)*17^2/(2*3*5*7*11*13)+5 =60.43 (17^2未満の素数の個数=61個) (1*2*4*6*10*12*16)*19^2/(2*3*5*7*11*13*17)+6 =71.16 (19^2未満の素数の個数=72個) (1*2*4*6*10*12*16*18)*23^2/(2*3*5*7*11*13*17*19)+7 =97.47 (23^2未満の素数の個数=99個) (1*2*4*6*10*12*16*18*22)*29^2/(2*3*5*7*11*13*17*19*23)+8 =145.57 (29^2未満の素数の個数=147個) (1*2*4*6*10*12*16*18*22*28)*31^2/(2*3*5*7*11*13*17*19*23*29)+9 =160.78 (31^2未満の素数の個数=162個) (1*2*4*6*10*12*16*18*22*28*30)*37^2/(2*3*5*7*11*13*17*19*23*29*31)+10 =219.25 (37^2未満の素数の個数=219個)
366 名前:132人目の素数さん mailto:sage [2024/01/07(日) 16:18:24.09 ID:SsbMX1Ts.net] (1*2*4*6*10*12*16*18*22*28*30*36)*41^2/(2*3*5*7*11*13*17*19*23*29*31*37)+11 =261.00 (41^2未満の素数の個数=263個) (1*2*4*6*10*12*16*18*22*28*30*36*40)*43^2/(2*3*5*7*11*13*17*19*23*29*31*37*41)+12 =280.27 (43^2未満の素数の個数=283個) (1*2*4*6*10*12*16*18*22*28*30*36*40*42)*47^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43)+13=326.05 (47^2未満の素数の個数=329個) (1*2*4*6*10*12*16*18*22*28*30*36*40*42*46)*53^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47)+14=403.61 (53^2未満の素数の個数=409個)
367 名前:132人目の素数さん mailto:sage [2024/01/07(日) 16:24:27.94 ID:SsbMX1Ts.net] (1*2*4*6*10*12*16*18*22*28*30*36*40*42*46*52)*59^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53)+15 =488.71 (59^2未満の素数の個数=487個) (1*2*4*6*10*12*16*18*22*28*30*36*40*42*46*52*58)*61^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59)+16 =513.79 (61^2未満の素数の個数=519個) (1*2*4*6*10*12*16*18*22*28*30*36*40*42*46*52*58*60)*67^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61)+17 =607.69 (67^2未満の素数の個数=609個)
368 名前:132人目の素数さん mailto:sage [2024/01/07(日) 16:34:23.51 ID:SsbMX1Ts.net] (1*2*4*6*10*12*16*18*22*28*30*36*40*42*46*52*58*60*66)*71^2/(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67)+18 =671.43 (71^2未満の素数の個数=675個) lim[n→∞] (Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1)≒P(n)^2未満の素数の個数 1/ζ(1)*P(∞)^2+(∞-1)=∞個 (P(∞)^2未満の素数の個数) lim[n→∞] (Π(k=1〜n+1)(1-1/P(k))*P(n+1)^2)+(n+1-1) - (Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1) = 1/ζ(1)*lim[n→∞] ((1-1/P(n+1))*P(n+1)^2-(P(n)^2)+1=nが無限の時のP(n)^2以上P(n+1)^2未満の素数の個数
369 名前:132人目の素数さん mailto:sage [2024/01/07(日) 23:47:11.38 ID:SsbMX1Ts.net] (2^2*3^1*5^1)未満の2,3,5を素因数に持たない数をX e^(i*2π*(x/2^2+y/3+z/5)) = e^(i*2π*(X/(2^2*3*5))) ←(4n<x<4n+2,4n+2<x<4n+4,3n<y<3n+3、5n<z<5n+5)の時 0=Σ(4n<x<4n+2,4n+2<x<4n+4,3n<y<3n+3、5n<z<5n+5)e^(i*2π*(x/2^2+y/3+z/5)) 2π*1/(18)+2π*5/(18)+2π*7/(18)+2π*11/(18)+2π*13/(18)+2π*17/(18)=6π ←2^1*3^2未満のとき 2π*1/(12)+2π*5/(12)+2π*7/(12)+2π*11/(12)=4π ←2^2*3^1未満のとき (1+5+7+11+13+17+19+23+25+29+31+35)/36*2π=12π ←2^2*3^2未満のとき (1+5+7+11+13+17+19+23+25+29+31+35+37+41+43+47+49+53+55+59+61+65+67+71)/72*2π=12π ←2^3*3^2未満の時 0=Σ(x,y,zが分母の素因数を含まない)e^(i*2π*(x/2^a+y/3^b+z/5^c))のため角度をすべて足しても2πで割り切れる
370 名前:132人目の素数さん mailto:sage [2024/01/07(日) 23:53:57.05 ID:SsbMX1Ts.net] ζ(s)=1/1+e^(i*yln2)/√2+e^(i*yln3)/√3+e^(i*yln4)/√4+e^(i*yln5)/√5+・・・ (Σ(n=1〜∞)(2π*y*ln(n)) mod 2π=0 ←角度をn個たしても2πで割り切れる Im(zetazero[k])=k番目の零点の虚部 e^(i*Σ(n=1〜∞)(2π*Im(zetazero[k])*ln(n)))=1
371 名前:132人目の素数さん mailto:sage [2024/01/08(月) 00:16:23.34 ID:r5n8vQTC.net] (2*(ln2/lnn))-1)*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n)) =Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n))-2*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(2n)) (2π*Im(zetazero[1])*ln(n))=Σ(n=1〜∞)((-1)^(n-1)*(2π*Im(zetazero[1])*ln(n))/(2*(ln2/lnn))-1)) ←正規化する e^(i*Σ(n=1〜∞)((-1)^(n-1)*(2π*Im(zetazero[1])*ln(n))/(2*(ln2/lnn))-1))=1
372 名前:132人目の素数さん mailto:sage [2024/01/08(月) 00:24:18.70 ID:r5n8vQTC.net] (1-2*((ln2/lnn))+1))*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n)) =Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n))-2*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(2n)) (2π*Im(zetazero[1])*ln(n))=Σ(n=1〜∞)((-1)^(n-1)*(2π*Im(zetazero[1])*ln(n))/(-2*(ln2/lnn)-1))←正規化する e^(i*Σ(n=1〜∞)((-1)^(n)*(2π*Im(zetazero[k])*ln(n))/(2*(ln2/lnn)+1)))=1
373 名前:132人目の素数さん mailto:sage [2024/01/08(月) 13:24:25.42 ID:r5n8vQTC.net] P(n)=n番目の素数 lim[n→∞] (Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1)=P(n)/lnP(n)±√P(n)*lnP(n) lim[n→∞] 1/ζ(1)*P(n)+(n-1)/P(n)=1/lnP(n)±2*ln√P(n)/√P(n) ←(n-1)/P(n),2*ln√P(n)/√P(n)が0になる lim[n→∞] 1/ζ(1)*P(n)=1/lnP(n) P(∞)*ln(P(∞))=ζ(1) P(∞)^P(∞)=e^(ζ(1)) ←無限大の素数の無限大の素数乗はe^(ζ(1))になる
374 名前:132人目の素数さん mailto:sage [2024/01/09(火) 22:53:15.12 ID:lExBawCv.net] (2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく Xに若い数から順に入れて足すと0になる 0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) 1*2*4*6*10 480 +e^(i*2π*1/(2*3*5*7*11)) +e^(i*2π*13^3/(2*3*5*7*11)) +Sum[e^(i*2π*prime[6]*prime[k]/(2*3*5*7*11)), {k, 6, 40}] +Sum[e^(i*2π*prime[7]*prime[k]/(2*3*5*7*11)), {k, 7, 32}] +Sum[e^(i*2π*prime[8]*prime[k]/(2*3*5*7*11)), {k, 8, 30}] +Sum[e^(i*2π*prime[9]*prime[k]/(2*3*5*7*11)), {k, 9, 25}] +Sum[e^(i*2π*prime[10]*prime[k]/(2*3*5*7*11)), {k, 10, 22}] +Sum[e^(i*2π*prime[11]*prime[k]/(2*3*5*7*11)), {k, 11, 21}] +Sum[e^(i*2π*prime[12]*prime[k]/(2*3*5*7*11)), {k, 12, 18}] +Sum[e^(i*2π*prime[13]*prime[k]/(2*3*5*7*11)), {k, 13, 17}] +Sum[e^(i*2π*prime[14]*prime[k]/(2*3*5*7*11)), {k, 14, 16}] +Sum[e^(i*2π*prime[15]*prime[k]/(2*3*5*7*11)), {k, 15, 15}] 338+1+35+26+23+17+13+11+7+5+3+1 e^(i*2π*1/(2*3*5*7*11))+Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]+e^(i*2π*13^2/(2*3*5*7*11))
375 名前:132人目の素数さん mailto:sage [2024/01/09(火) 23:05:27.32 ID:lExBawCv.net] (2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく Xに若い数から順に入れて足すと-1/2か0になる -1/2=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき) -4.7738256139528681057872538326663778680155965889642227453+ 2.9583188869703097700756859458249181166573469894570i -9.0857958635868135678582416976274329669070514423097525400- 3.0733600982538487468996812182266789004635976528715i -3.6831129443236299909236325740470272452449595081046118461- 8.9782218382117303545383202676565523182379224076288i 3.10225665902196712501762391941450159991129502344048864868- 7.5267647987972420637530463404490362777099344431826i 2.97717706048278641787318176514081205465125132468099766889- 2.0132966748044861337334427350882118724796850814798i -4.773825613952+ 2.95831888697030977i -9.085795863586- 3.07336009825384874i -3.683112944323- 8.97822183821173035i +3.1022566590219- 7.52676479879724206i +2.9771770604827- 2.01329667480448613i =-11.4633007023564 - 18.63332452309699751 i Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]=11.41967170451950178844+18.9254794584064532961632295i-11.4633007023564 - 18.63332452309699751 i≒0 ←Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))
376 名前:132人目の素数さん mailto:sage [2024/01/09(火) 23:18:23.05 ID:lExBawCv.net] 1*2*4*6*10 480 +e^(i*2π*1/(2*3*5*7*11)) +e^(i*2π*13^3/(2*3*5*7*11)) +Sum[e^(i*2π*prime[6]*prime[k]/(2*3*5*7*11)), {k, 6, 40}] +Sum[e^(i*2π*prime[7]*prime[k]/(2*3*5*7*11)), {k, 7, 32}] +Sum[e^(i*2π*prime[8]*prime[k]/(2*3*5*7*11)), {k, 8, 30}] +Sum[e^(i*2π*prime[9]*prime[k]/(2*3*5*7*11)), {k, 9, 25}] +Sum[e^(i*2π*prime[10]*prime[k]/(2*3*5*7*11)), {k, 10, 22}] +Sum[e^(i*2π*prime[11]*prime[k]/(2*3*5*7*11)), {k, 11, 21}] +Sum[e^(i*2π*prime[12]*prime[k]/(2*3*5*7*11)), {k, 12, 18}] +Sum[e^(i*2π*prime[13]*prime[k]/(2*3*5*7*11)), {k, 13, 16}] +Sum[e^(i*2π*prime[14]*prime[k]/(2*3*5*7*11)), {k, 14, 16}] +Sum[e^(i*2π*prime[15]*prime[k]/(2*3*5*7*11)), {k, 15, 15}] 338+1+1+35+26+23+17+13+11+6+5+3+1=480 e^(i*2π*1/(2*3*5*7*11))+Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]+e^(i*2π*13^2/(2*3*5*7*11))
377 名前:132人目の素数さん mailto:sage [2024/01/09(火) 23:21:20.36 ID:lExBawCv.net] (2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく Xに若い数から順に入れて足すと-1/2か0になる -1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき) -4.7738256139528681057872538326663778680155965889642227453+ 2.9583188869703097700756859458249181166573469894570i -9.0857958635868135678582416976274329669070514423097525400- 3.0733600982538487468996812182266789004635976528715i -3.6831129443236299909236325740470272452449595081046118461- 8.9782218382117303545383202676565523182379224076288i 2.14588565686102345824797192824291394603103694047283735842- 7.8189197341066978310674713188024685168005390199084i 2.97717706048278641787318176514081205465125132468099766889- 2.0132966748044861337334427350882118724796850814798i -4.773825613952+ 2.95831888697030977i -9.085795863586- 3.07336009825384874i -3.683112944323- 8.97822183821173035i +2.1458856568610- 7.81891973410669783i +2.9771770604827- 2.01329667480448613i =-12.4196717045173 - 18.92547945840645328 i Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]=11.41967170451950178844+18.9254794584064532961632295i-12.4196717045173 - 18.92547945840645328 i= -1 ←Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))
378 名前:132人目の素数さん mailto:sage [2024/01/09(火) 23:36:45.27 ID:lExBawCv.net] Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき) Sum[e^(i*2π*prime[k]/(2*3*5*7)), {k, 5, 46}]+e^(i*2π*1/(2*3*5*7))+e^(i*2π*121/(2*3*5*7))=-0.688942 + 2.51378 i e^(i*2π*143/(2*3*5*7))+e^(i*2π*169/(2*3*5*7))+e^(i*2π*187/(2*3*5*7))+e^(i*2π*209/(2*3*5*7))=1.6889421505813673802324365777259 -2.51377639724034521156697179892091634207165i (2^a*3^b*5^c*7^d)未満の2,3,5,7を素因数に持たない数をXとおく Xに若い数から順に入れて足すと1/2か0になる 1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d)) (a>1またはb>1またはc>1またはd>1のとき)
379 名前:132人目の素数さん mailto:sage [2024/01/09(火) 23:37:16.54 ID:lExBawCv.net] (2^a*3^b)未満の2,3を素因数に持たない数をXとおく Xに若い数から順に入れて足すと1か0になる 1=Σe^(i*2pi*(X/(2^1*3^1))(a=1,b=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b)) (a>1またはb>1のとき) (2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく Xに若い数から順に入れて足すと-1か0になる -1=Σe^(i*2pi*(X/(2^1*3^1*5^c))(a=1,b=1,c=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) (a>1またはb>1またはc>1のとき) (2^a*3^b*5^c*7^d)未満の2,3,5,7を素因数に持たない数をXとおく Xに若い数から順に入れて足すと1/2か0になる 1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d)) (a>1またはb>1またはc>1またはd>1のとき) (2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく Xに若い数から順に入れて足すと-1/2か0になる -1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき)
380 名前:132人目の素数さん mailto:sage [2024/01/09(火) 23:40:41.55 ID:lExBawCv.net] (2^a*3^b*5^c*7^d*・・・*P(n)^z)未満の2,3,・・・P(n)を素因数に持たない数をXとおく Xに若い数から順に入れて足すと(-1)^nか0になる(nが偶数の時は1,奇数の時は-1) (-1)^n=Σe^(i*2pi*(X/(2^1*3^1*・・・*P(n)^1))(指数部がすべて1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*・・・*P(n)^z)) (指数部がすべて1でないとき)
381 名前:132人目の素数さん mailto:sage [2024/01/10(水) 00:16:53.95 ID:I/Yj6vvM.net] (2^a*3^b*5^c*7^d*・・・*P(n)^z)未満の2,3,・・・P(n)を素因数に持つ数をYとおく Yに若い数から順に入れて足すと(-1)^(n+1)か0になる(nが偶数の時は-1,奇数の時は1) ←Zを全体の集合とするとΣe^(i*2pi*(Z/(2^1*3^1*・・・*P(n)^1))=0のため (-1)^(n+1)=Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1))(指数部がすべて1のとき) 0=Σe^(i*2pi*(Y/(2^a*3^b*・・・*P(n)^z)) (指数部がすべて1でないとき) Y=2^1*3^1*・・・*P(n)^1未満の2,3,5,・・・P(n)を素因数に持つ数の集合 Y'=2^1*3^1*・・・*P(n+1)^1未満の2,3,5,・・・P(n+1)を素因数に持つ数の集合 (-1)^(n+1)=Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1)) 1/P(n+1)*(-1)^(n+1)=1/P(n+1)*Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1)) (-1)^(n+2)=1/P(n+1)*(-1)^(n+1)+Σe^(i*2pi*((Y'-Y)/(2^1*3^1*・・・*P(n)^1*P(n+1)) ←Y'の集合に足らない数を追加で足してやることでΣe^(i*2pi*(Y'/(2^1*3^1*・・・*P(n)^1*P(n+1))にできる (-1)^(n+2)=Σe^(i*2pi*(Y'/(2^1*3^1*・・・*P(n)^1*P(n+1))
382 名前:132人目の素数さん mailto:sage [2024/01/10(水) 00:19:54.14 ID:I/Yj6vvM.net] (-1)^(n+2)-1/P(n+1)*(-1)^(n+1)=Σe^(i*2pi*((Y'-Y)/(2^1*3^1*・・・*P(n)^1*P(n+1)) |1-1/P(n+1)|はY'=2^1*3^1*・・・*P(n+1)^1未満の2,3,5,・・・P(n+1)を素因数に持つ数の集合から Y=2^1*3^1*・・・*P(n)^1未満の2,3,5,・・・P(n)を素因数に持つ数の集合をひいた数の集合をすべて足して (2^1*3^1*・・・*P(n)^1*P(n+1))で割った数だとみなせる
383 名前:132人目の素数さん mailto:sage [2024/01/10(水) 00:50:05.87 ID:I/Yj6vvM.net] (2^a*3^b*5^c*7^d*・・・*P(n)^z)未満の2,3,・・・P(n)を素因数に持つ数をYとおく Yに若い数から順に入れて足すと(-1)^(n+1)か0になる(nが偶数の時は-1,奇数の時は1) ←Zを全体の集合とするとΣe^(i*2pi*(Z/(2^1*3^1*・・・*P(n)^1))=0のため (-1)^(n+1)=Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1))(指数部がすべて1のとき) 0=Σe^(i*2pi*(Y/(2^a*3^b*・・・*P(n)^z)) (指数部がすべて1でないとき) Y=2^1*3^1*・・・*P(n)^1未満の2,3,5,・・・P(n)を素因数に持つ数の集合 Y'=2^1*3^1*・・・*P(n+1)^1未満の2,3,5,・・・P(n+1)を素因数に持つ数の集合 (-1)^(n+1)=Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1)) 0=Σe^(i*2pi*(Y/(2^1*3^1*・・・*P(n)^1))+Σe^(i*2pi*((Y')/(2^1*3^1*・・・*P(n)^1*P(n+1)) 0=Σe^(i*2pi*(Y*P(n+1)/(2^1*3^1*・・・*P(n)^1*P(n+1)))+Σe^(i*2pi*((Y')/(2^1*3^1*・・・*P(n)^1*P(n+1)) Y*P(n+1)+Y'の集合は2^1*3^1*・・・*P(n)^1*P(n+1)で分割された円周上に均等に分布する
384 名前:132人目の素数さん mailto:sage [2024/01/11(木) 18:46:36.87 ID:if71/72+.net] zetazero[k]=k番目のゼロ点 ζ(zetazero[k])=1/(1-1/2^(zetazero[k]-1))*1/(1-1/m^(zetazero[k]-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(zetazero[k]))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(zetazero[k])))=0 Σ(n=1〜∞)(-1)^(n-1)*1/n^(zetazero[k]))=0のため m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(zetazero[k]))=(Σ(n=1〜∞)(-1)^(n-1)*1/(m^(1-1/s)*n)^(zetazero[k]))=0になる m≠1 zetazero[k]=x+iy (Σ(n=1〜∞)(-1)^(n-1)*1/(m^((x-1+iy)/(x+iy))*n)^(zetazero[k]))=(Σ(n=1〜∞)(-1)^(n-1)*1/(m^((x^2 - x + y^2)/(x^2 + y^2) + (i y)/(x^2 + y^2))*n)^(zetazero[k])) Re((m^((x^2 - x + y^2)/(x^2 + y^2))*n*m^( i*(y)/(x^2 + y^2)))^(x+i*y)) =(m^((x^2 - x + y^2)/(x^2 + y^2))*n)^x*m^(-y^2/(x^2 + y^2)) =m^((x^3-x^2+y^2*(x-1))/(x^2+y^2))*n^x =m^(x-1)*n^x Im((m^((x^2 - x + y^2)/(x^2 + y^2))*n*m^( i*(y)/(x^2 + y^2)))^(x+i*y)) =m^(iy*(x^2 - x + y^2)/(x^2 + y^2))*n^(iy)*m^( i*xy/(x^2 + y^2)) =m^(i y) n^(i y) Σ(n=1〜∞)(-1)^n*e^(i*y*ln(mn))/(m^(x-1)*n^x)=0 ←長さ1/(m^(x-1)*n^x)の辺をe^(i*y*ln(mn))で回転させて連結させると多角形を作ることができるため0点に収束する
385 名前:132人目の素数さん mailto:sage [2024/01/11(木) 19:05:22.36 ID:if71/72+.net] Σ(n=1〜∞)(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/(m^(-1/2)*n^(1/2)) ←mに何を入れても0点に収束する Σ(n=1〜∞)(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(n/2))/(1/2^(-1/2)*n^(1/2))=0 ←逆数でも収束する Σ(n=1〜∞)(-1)^n*e^(i*y*ln(n/m))/(m^(1-x)*n^x)=0 ←長さ1/(m^(1-x)*n^x)の辺をe^(i*y*ln(n/m))で回転させて連結させると多角形を作ることができるため0点に収束する (m^(1-x)とn^x)の次数が等しいときx=1/2出ないといけない Σ(n=1〜∞)(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(4n))/(4^(-2/3)*n^(1/3))=-0.63+0.65i ←0点に収束しない
386 名前:132人目の素数さん mailto:sage [2024/01/12(金) 20:50:34.97 ID:Uq67vDTi.net] 1/(1-1/2^(s-1))*1/(1-1/m^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m*(floor[cos(n*2pi/m)^2]))/n^(s))=ζ(s) 1/(1-1/2^-1/2)*1/(1-1/5^-1/2)*(Σ(n=1~∞)(-1)^(n-1)(1-5*(floor[cos(n*2pi/5)^2]))/n^(1/2))=-1.46=ζ(1/2)
387 名前:132人目の素数さん mailto:sage [2024/01/12(金) 21:17:34.78 ID:Uq67vDTi.net] 1/(1-1/2^(s-1))*1/(1-1/m^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m*(floor[cos(n*2pi/m)^2]))/n^(s))=ζ(s)=0 (Σ(n=1~∞)(-1)^(n-1)(floor[cos(n*2pi/m)^2])/n^(s))=0 1/(m)^s-1/(2m)^s+1/(3m)^s-1/(4m)^s+・・・・=0 floor[cos(n*2pi/m)^2]=floor[1/2 (1+cos((4 n π)/m))] 1/(1-1/2^(zetazero[1]-1))*1/(1-1/15^(zetazero[1]-1))*(Σ(n=1~∞)(-1)^(n-1)(1-15*(floor[1/2 (1+cos((4 n π)/15))]))/n^(zetazero[1]))=0
388 名前:132人目の素数さん mailto:sage [2024/01/12(金) 21:43:23.98 ID:Uq67vDTi.net] 1/(1-1/2^(s-1))*1/(1-1/m1^(s-1))*1/(1-1/m2^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m1*(floor[cos(n*2pi/m1)^2]))(1-m2*(floor[cos(n*2pi/m2)^2]))/n^(s))=ζ(s) m1以降に3以上の素数を入れていく 1/(1-1/2^(s-1))*1/(1-1/3^(s-1)*1/(1-1/5^(s-1))*・・・*(Σ(n=1~∞)(-1)^(n-1)(1-m1*(floor[cos(n*2pi/3)^2]))(1-m2*(floor[cos(n*2pi/5)^2]))*・・・)/n^(s))=ζ(s) Π*1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s)
389 名前:132人目の素数さん mailto:sage [2024/01/12(金) 21:49:55.32 ID:Uq67vDTi.net] Π1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s) Π1/(1-1/prime[k]^(s))=ζ(s) Re(s)>1のとき収束 Π1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s)=Π1/(1-1/prime[k]^(s)) (Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=Π1/(1-1/prime[k]^(s))/Π1/(1-1/prime[k]^(s-1))になるときs=1/2+iyになる s=1/2+iyのとき (Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(1/2+iy))=Π1/(1-1/prime[k]^(1/2+iy))Π1/(1-1/prime[k]^(-1/2+iy))
390 名前:132人目の素数さん mailto:sage [2024/01/12(金) 22:04:53.90 ID:Uq67vDTi.net] (Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=0のとき Π1/(1-1/prime[k]^(s))/Π1/(1-1/prime[k]^(s-1))の中に (1-1/a^(x+iy))/(1-1/a^(x-1+iy))=0になる素数aが存在する y=(2nπ-i*ln(a^-x))/ln(a)=2nπ/ln(a)+ix ←非自明なゼロ点のy座標
391 名前:132人目の素数さん mailto:sage [2024/01/13(土) 02:02:48.12 ID:IOv4lBIh.net] 1/(1-1/2^-1/2)*1/(1-1/3^-1/2)*1/(1-1/5^-1/2)*Σ(n=1~25000)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(1/2)=-1.34223 ←25000を∞にして-1.46に近づく 1/(1-1/2)*1/(1-1/3)*1/(1-1/5)*Σ(n=1~100)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(2)=1.6421734 ←100を∞にしてπ^2/6に近づく 1/(1-1/2^2)*1/(1-1/3^2)*1/(1-1/5^2)*Σ(n=1~25)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(3)=1.20275 ←25を∞にして1.20205に近づく Π1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s)=Π1/(1-1/prime[k]^(s)) (1-1/a^(x-1+iy))/(1-1/a^(x+iy))=0 y=i(x-1)+2nπ/ln(a) (1-1/a^(0+i*2nπ/ln(a))/(1-1/a^(1+2nπ/ln(a)))=0 ←nが整数の時満たす。 ζ(s)=ζ(1-s) Π1/(1-1/prime[k]^(-s))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(1-s))=ζ(1-s)=Π1/(1-1/prime[k]^(1-s)) (1-1/a^(-x-iy))/(1-1/a^(1-x-iy))=0 y'=ix+2nπ/ln(a) (1-1/a^(0-i*2nπ/ln(a))/(1-1/a^(1-2nπ/ln(a)))=0 ←nが整数の時満たす。 |y/y'|=1 のときx=1/2
392 名前:132人目の素数さん mailto:sage [2024/01/13(土) 16:36:15.00 ID:IOv4lBIh.net] 2*5未満の2,5を素因数に持たない集合の和 e^(i*2pi*(1/10))+e^(i*2pi*(3/10))+e^(i*2pi*(7/10))+e^(i*2pi*(9/10))=1 2^2*5未満の2,5を素因数に持たない集合の和 e^(i*2pi*(1/20))+e^(i*2pi*(3/20))+e^(i*2pi*(7/20))+e^(i*2pi*(9/20))+e^(i*2pi*(11/20))+e^(i*2pi*(13/20))+e^(i*2pi*(17/20))+e^(i*2pi*(19/20))=0 3*5未満の3,5を素因数に持たない集合の和 e^(i*2pi*(1/15))+e^(i*2pi*(2/15))+e^(i*2pi*(4/15))+e^(i*2pi*(7/15))+e^(i*2pi*(8/15))+e^(i*2pi*(11/15))+e^(i*2pi*(13/15))+e^(i*2pi*(14/15))=1 3^2*5未満の3,5を素因数に持たない集合の和 e^(i*2pi*(1/45))+e^(i*2pi*(2/45))+e^(i*2pi*(4/45))+e^(i*2pi*(7/45))+e^(i*2pi*(8/45))+e^(i*2pi*(11/45))+e^(i*2pi*(13/45))+e^(i*2pi*(14/45)) +e^(i*2pi*(16/45))+e^(i*2pi*(17/45))+e^(i*2pi*(19/45))+e^(i*2pi*(22/45))+e^(i*2pi*(23/45))+e^(i*2pi*(26/45))+e^(i*2pi*(28/45))+e^(i*2pi*(29/45)) +e^(i*2pi*(31/45))+e^(i*2pi*(32/45))+e^(i*2pi*(34/45))+e^(i*2pi*(37/45))+e^(i*2pi*(38/45))+e^(i*2pi*(41/45))+e^(i*2pi*(43/45))+e^(i*2pi*(44/45))=0 素数x^a*素数y^b未満のx,yを素因数に持たない集合の輪は a=1 b=1のとき1に収束し a>1またはb>1のとき0に収束する
393 名前:132人目の素数さん mailto:sage [2024/01/13(土) 16:40:39.57 ID:IOv4lBIh.net] 素数x^a*素数y^b未満のx,yを素因数に持たない集合の輪は a=1 b=1のとき1に収束し a>1またはb>1のとき0に収束するため 素数x^a*素数y^b未満のx,yを素因数に持たない集合の数を若い順からn(k)とするとき a>1またはb>1のとき Σ2π*(n(k)/(x^a*y^b)) mod 2π=0 ←Σ(n(k)/(x^a*y^b)) は整数になる
394 名前:132人目の素数さん mailto:sage [2024/01/13(土) 16:45:33.80 ID:IOv4lBIh.net] 素数x^a*素数y^b未満のx,yを素因数に持たない集合の和は (集合の和=Σ(k=1~m) n(k) ) a>1またはb>1のとき0に収束するため x^a*y^bを必ず素因数にもつ Σ(k=1~m) n(k) = (x^a*y^b)*A ←A=任意の整数
395 名前:132人目の素数さん mailto:sage [2024/01/13(土) 17:51:24.34 ID:IOv4lBIh.net] Π(k=1~∞)Prime[k]未満の素数Prime[k](k=1~∞)を素因数に持たない集合の和は Π(k=1~∞)Prime[k]を必ず素因数にもつ Π(k=1~∞)Prime[k]>X(∞) Π(k=1~∞)Prime[k]*A=Σ(m=1~∞)X(m) ←X(m)はprime[k]を素因数に持たない ζ(1/2+iy)=Σ1/n^(1/2+iy)=1/1+e^(i*yln2)/√2+e^(i*yln3)/√3+e^(i*yln4)/√4+・・・ ζ(1/2+iy)=0のとき Σ2π*(y*ln(n)) mod 2π=0 ←Σ(n=1~∞)(y*ln(n)) は整数になる
396 名前:132人目の素数さん mailto:sage [2024/01/13(土) 20:41:37.88 ID:IOv4lBIh.net] 5*7未満の素数5,7を素因数に持たない集合の和は 5*7を素因数にもつ 1+2+3+4+6+8+9+11+12+13+16+17+18+19+22+23+24+26+27+29+31+32+33+34 (1+2+3+4+6+8+9+11+12+13+16+17+18+19+22+23+24+26+27+29+31+32+33+34)=(5*7)*12 3*11未満の素数3,11を素因数に持たない集合の和は 3*11を素因数にもつ 1+2+4+5+7+8+10+11+13+14+16+17+19+20+22+23+25+26+28+29+31+32=(3*11)*11 6^2未満の素数6を素因数に持たない集合の和は 6^2を素因数にもつ 1+2+3+4+5+7+8+9+10+11+13+14+15+16+17+19+20+21+22+23+25+26+27+28+29+31+32+33+34+35=6^2*15 3^2未満の素数3を素因数に持たない集合の和は 3^2を素因数にもつ 1+2+4+5+7+8=3^2*3 P未満の素数Pを素因数に持たない集合の和は Pを素因数にもつ 1+2+3+4+・・・+P-1=P*(P-1)/2 P^2未満の素数Pを素因数に持たない集合の和は Pを素因数にもつ 1+2+3+・・・・・・(P^2-1)=P*(P*(P^2-1)/2-1)
397 名前:132人目の素数さん mailto:sage [2024/01/13(土) 20:55:37.51 ID:IOv4lBIh.net] a^x*b^y未満の素数a,bを素因数に持たない集合の和は a^x*b^yを素因数にもつ (1+a^x*b^y)*(a^x*b^y)/2-Σ(a^n*b^m)=(a^x*b^y)*((1+a^x*b^y)/2-1/(a^x*b^y)*Σ(a^n*b^m)) ←1/(a^x*b^y)*Σ(a^n*y^m)これが整数になる必要がある Σ(a^n*y^m=(a^1*b^0+a^0*b^1+a^1*b^1+a^2*b^1+a^1*b^2+a^2*b^2+・・・・a^(x-1)*b^(y-1)+a^x*b^(y-1)+a^(x-1)*b^y+a^x*b^y)=(a^x*b^y)*A(A=任意の整数)
398 名前:132人目の素数さん [2024/01/13(土) 20:57:36.99 ID:xmwcWr1S.net] マユツバで読んでみたけど,ガチだった。 「素数の出現法則」、ついに発見される! 既成概念を根底からくつがえす現象、果たして証明できるのか!? https://prtimes.jp/main/html/rd/p/000000002.000107904.html 斬新なアプローチであることは確か。考えたこともなかった方法だったから,色々と勉強になった。 他にもまだまだ法則が見つかっているらしいと匂わせていた。
399 名前:132人目の素数さん mailto:sage [2024/01/13(土) 22:48:43.08 ID:IOv4lBIh.net] 2*3*5未満の素数2,3,5を素因数に持たない集合の和は 2*3*5を素因数にもつ 30*31/2-(2+3+4+5+6+8+9+10+12+14+15+16+18+20+21+22+24+25+26+27+28+30)=120=(2*3*5)*2^2 2*(1+2+3+4+5+6+7+8+9+11+12+13+14+15)+3*(1+3+5+7+9)+5*(1+5) 30*31/2-(2*120+3*25+5*6)=30*(31/2-(2*120+3*25+30)/30) 2*3*5*7*11未満の素数2,3,5,7,11を素因数に持たない集合の和は 2*3*5*7*11を素因数にもつ Π(k=1〜m)(prime[k])未満の素数prime[k](1番目からm番目の素数)を素因数に持たない集合の和は Π(k=1〜m)(prime[k])を素因数にもつ (2^a*3^b*5^c*7^d*・・・*P(n)^z)未満の2,3,・・・P(n)を素因数に持たない数をXとおく Xに若い数から順に入れて足すと(-1)^nか0になる(nが偶数の時は1,奇数の時は-1) (-1)^n=Σe^(i*2pi*(X/(2^1*3^1*・・・*P(n)^1))(指数部がすべて1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*・・・*P(n)^z)) (指数部がすべて1でないとき) (-1)^n=Σe^(i*2pi*(X/(2^1*3^1*・・・*P(n)^1)) (-1)^n=Σe^(i*2pi*(X*P(n+1)/(2^1*3^1*・・・*P(n)^1*P(n+1))) (-1)^(n+1)=Σe^(i*2pi*(X'/(2*3*・・・*P(n)*P(n+1)))
400 名前:132人目の素数さん mailto:sage [2024/01/13(土) 22:54:33.51 ID:IOv4lBIh.net] 2 1 e^(i*2π*1/2)=-1 2*3 e^(i*2π*3/6)=-1 2*3 1+5 e^(i*2π*1/6)+e^(i*2π*5/6)=1 2*3*5 5+25 e^(i*2π*5/30)+e^(i*2π*25/30)=1 2*3*5 1+7+11+13+17+19+23+29 e^(i*2π*1/30)+e^(i*2π*7/30)+e^(i*2π*11/30)+e^(i*2π*13/30) +e^(i*2π*17/30)+e^(i*2π*19/30)+e^(i*2π*23/30)+e^(i*2π*29/30)=-1
401 名前:132人目の素数さん mailto:sage [2024/01/14(日) 01:38:21.78 ID:hK2Tvkd7.net] Π(k=1〜n)(prime[k])未満の素数prime[k](1番目からn番目の素数)を素因数に持たない集合をX(n)[k](k=1~m)とする (-1)^n=Σ(l=1~m)e^(i*2pi*(X(n)[l]/(Π(k=1〜n)(prime[k]))) e^(i*2π*1/2)=-1 e^(i*2π*1/6)+e^(i*2π*5/6)=1(1,3,5) 上の項目を足したとき e^(i*2π*1/30)+e^(i*2π*7/30)+e^(i*2π*11/30)+e^(i*2π*13/30)+e^(i*2π*17/30)+e^(i*2π*19/30)+e^(i*2π*23/30)+e^(i*2π*29/30)=-1(1,5,7,11,13,15,17,19,23,25,29) 上の項目を足したとき e^(i*2π*1/210)+e^(i*2π*11/210)+e^(i*2π*13/210)+e^(i*2π*17/210)+e^(i*2π*19/210)+e^(i*2π*23/210)+e^(i*2π*29/210)+・・・=1(1,7,11,13,17,19,23,29,31,35,37,41,43,49,53,・・・)上の項目を足したとき e^(i*2π*1/2310)+e^(i*2π*17/2310)+e^(i*2π*19/2310)+・・・=-1(1,13,17,19,23,29,31,35,37,41,43,49,53,・・・)上の項目を足したとき e^(i*2π*1/Π(k=1〜n-1)(prime[k]))+e^(i*2π*prime[n]/Π(k=1〜n-1)(prime[k]))+e^(i*2π*prime[n+1]/Π(k=1〜n-1)(prime[k]))+・・・=(-1)^(n-1) e^(i*2π*1/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n+1]/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n+2]/Π(k=1〜n)(prime[k]))+・・・=(-1)^(n) 足していくと2項目以降に e^(i*2π*1/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n]/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n+1]/Π(k=1〜n)(prime[k]))+・・・=-1+1-1+1-1+1-1+・・・+(-1)^(n)
402 名前:132人目の素数さん mailto:sage [2024/01/14(日) 02:01:49.71 ID:hK2Tvkd7.net] 円を重ねて素数の個数を求める ((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1))*(11*7)/(2*3*5*7)=21.63 11*7=77未満の素数の個数=21個 ((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1))*(13*11)/(2*3*5*7*11)=33.36 13*11=143未満の素数の個数=34個 ((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1)*(13-1))*(17*13)/(2*3*5*7*11*13)=46.35 17*13=221未満の素数の個数=47個
403 名前:132人目の素数さん mailto:sage [2024/01/14(日) 02:16:17.32 ID:hK2Tvkd7.net] sum[Product[(Prime[k]-1), {k, 1, n}],{n, 1, m}]*prime[m+1]/Product[(Prime[k]), {k, 1, m-1}]=prime[m]*prime[m-1]未満の素数の個数
404 名前:132人目の素数さん mailto:sage [2024/01/14(日) 02:20:39.44 ID:hK2Tvkd7.net] sum[Product[(Prime[k]-1), {k, 1, n}],{n, 1, 40}]*prime[41]/Product[(Prime[k]), {k, 1, 39}]=3,340 173*179=30967未満の素数3337個
405 名前:132人目の素数さん mailto:sage [2024/01/14(日) 21:20:17.44 ID:hK2Tvkd7.net] 半径1の円周上に(Π(k=1~n)P(k))(1番目からn番目の素数積) 個の点を均等に分布させる(f(1)=e^(i*2π*1/Π(k=1~n)P(k))からf((Π(k=1~n)P(k)))=e^(i*2π*(Π(k=1~n)P(k))/(Π(k=1~n)P(k)))まで) この中からf(X)=e^(i*2π*X/Π(k=1~n)P(k)))のXが1番目からn番目までの素数を素因数に含まない点のみにする f(Y)=e^(i*2π*Σa_k/P(k))) (a_kはP(k)を素因数に含まない) ←f(Y)=f(X)からXが1番目からn番目までの素数を素因数に含む点をすべて削除したもの 1/(2πi)*ln(f(Y))<P(n+1)^2/(Π(k=1~n)P(k))となるときのa_kが求まれば素数を出せる Y=e^(i*2π*(1/2+1/3+1/5)) (2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5)))=1 <7^2 (2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5)))=7 <7^2 (2*3*5)/(2πi)*ln(e^(i*2π*(1/2+2/3+2/5)))=-13 <7^2 (2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7)))=37 <11^2 (2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+1/3+3/5+1/7)))=-89 <11^2 (2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5+5/7+1/11)))=89 <13^2
406 名前:132人目の素数さん mailto:sage [2024/01/14(日) 21:39:59.02 ID:hK2Tvkd7.net] Π(k=1~n)(P(k)-1)の大きさでa_kの組み合わせは増えていくため その中からP(n+1)^2より小さい数を吐き出すa_kの組み合わせを求める必要がある (2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+13/11+4/13))) =-10039 (2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+3/5+1/7+13/11+4/13))) =1973 (2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5+6/7+10/11+12/13))) =-10331 (2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+1/11+1/13))) =10331 (2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+1/11))) =617 (2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5+6/7+10/11))) =-617 (2*3*5*7*11*・・・*P(n))/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+1/11+・・・+1/P(n))))=A (2*3*5*7*11*・・・*P(n))/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5+6/7+10/11+・・・+(P(n)-1)/P(n))))=-A a_kがすべて1のとき吐き出す値に-1をかけるとa_k=分母の素因数-1のとき吐き出す値になる
407 名前:132人目の素数さん mailto:sage [2024/01/15(月) 00:21:18.38 ID:Z9hJzEUI.net] (Product[(Prime[k]), {k, 1, 17}])/(2πi)*ln(e^(i*2π*(sum[(-2)^(k-1)/prime[k],{k,1,17}]))) =326065381055471725501
408 名前:132人目の素数さん mailto:sage [2024/01/15(月) 01:07:56.79 ID:Z9hJzEUI.net] (2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5)))=7 ←7を式に入れる (2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+2/3-2/5+2/7)))=11 ←11を式に入れる (2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5-8/7+2/11)))=13 ←13を式に入れる 1からn番目の素数でn+1番目の素数を表現するとき分子は±2^kになる可能性がある
409 名前:132人目の素数さん mailto:sage [2024/01/15(月) 01:13:18.08 ID:Z9hJzEUI.net] (2^n) mod prime[k] =X prime[k]が何番目の素数でもnを変動させることでXは1からprime[k]-1の間のすべての整数を表現できる
410 名前:132人目の素数さん mailto:sage [2024/01/16(火) 18:42:41.48 ID:CGru1Z9S.net] (2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))=7 (2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))=11 (2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5+6/7+(2+11n)/11)))=13 (2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5+4/7+3/11+(12+13n)/13)))=17
411 名前:132人目の素数さん mailto:sage [2024/01/16(火) 20:26:38.61 ID:CGru1Z9S.net] (2*3*5*7*11*13*17)/(2πi)*ln(e^(i*2π*(1/2+a/3+b/5+c/7+d/11+x/13+y/17)))=19 a,b,c,d,x,yに分母の素因数を持たない数を入れて式を満たす組み合わせは一通りだけある
412 名前:132人目の素数さん mailto:sage [2024/01/18(木) 00:01:02.52 ID:N7iNgq1x.net] 1/(πi)*ln(e^(i*2π*(3/2)))=3 1/(πi)^2*ln(e^(i*2π*(3/2)))*ln(e^(i*2π*(1/2+1/3)))=5 1/(πi)^4*ln(e^(i*2π*(3/2)))^2*ln(e^(i*2π*(1/2+1/3)))*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))=7 1/(πi)^8*ln(e^(i*2π*(3/2)))^4*ln(e^(i*2π*(1/2+1/3)))^2*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))=11 1/(πi)^16*ln(e^(i*2π*(3/2)))^8*ln(e^(i*2π*(1/2+1/3)))^4*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))^2*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))*ln(e^(i*2π*(1/2+2/3+4/5+6/7+(2+11n)/11)))=13 1/(πi)^32*ln(e^(i*2π*(3/2)))^16*ln(e^(i*2π*(1/2+1/3)))^8*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))^4*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))^2*ln(e^(i*2π*(1/2+2/3+4/5+6/7+(2+11n)/11)))*ln(e^(i*2π*(1/2+1/3+2/5+4/7+3/11+(12+13n)/13)))=17 Prime(n)=1/(πi)^2^(n-1)*Πln(e^(i*2π*(ΣX/Y)))
413 名前:132人目の素数さん mailto:sage [2024/01/18(木) 01:08:47.73 ID:N7iNgq1x.net] ((3/2))^8*((1/2+1/3)mod1)^4*((1/2+1/3+(2)/5)mod1)^2*((1/2+2/3+3/5+(2)/7)mod1)*((1/2+2/3+4/5+6/7+(2)/11)mod1)*2^16=13
414 名前:132人目の素数さん mailto:sage [2024/01/18(木) 01:13:45.99 ID:N7iNgq1x.net] ((3/2))^16*((1/2+1/3)mod1)^8*((1/2+1/3+(2)/5)mod1)^4*((1/2+2/3+3/5+(2)/7)mod1)^2*((1/2+2/3+4/5+6/7+(2)/11)mod1)*((1/2+1/3+2/5+4/7+3/11+(12)/13)mod1)*2^32=17
415 名前:132人目の素数さん mailto:sage [2024/01/18(木) 01:18:46.81 ID:N7iNgq1x.net] ((3/2))^32*((1/2+1/3)mod1)^16*((1/2+1/3+(2)/5)mod1)^8*((1/2+2/3+3/5+(2)/7)mod1)^4*((1/2+2/3+4/5+6/7+(2)/11)mod1)^2*((1/2+1/3+2/5+4/7+3/11+(12)/13)mod1)*((1/2+a/3+b/5+c/7+d/11+e/13+f/17)mod1)*2^64=19 a = 3 n_1 + 1, b = 5 n_2 + 2, c = 7 n_3 + 3, d = 11 n_4 + 8, e = 13 n_5 + 11, f = 17 n_6 + 13, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z, n_5 element Z, n_6 element Z ((3/2))^32*((1/2+1/3)mod1)^16*((1/2+1/3+(2)/5)mod1)^8*((1/2+2/3+3/5+(2)/7)mod1)^4*((1/2+2/3+4/5+6/7+(2)/11)mod1)^2*((1/2+1/3+2/5+4/7+3/11+(12)/13)mod1)*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)mod1)*2^64=19
416 名前:132人目の素数さん mailto:sage [2024/01/18(木) 01:26:18.00 ID:N7iNgq1x.net] 2*3*5*7*11*13*17*19*((1/2+a/3+b/5+c/7+d/11+e/13+f/17+g/19)mod1)=23 a = 3 n_1 + 2, b = 5 n_2 + 1, c = 7 n_3 + 5, d = 11 n_4 + 7, e = 13 n_5 + 11, f = 17 n_6 + 11, g = 19 n_7 + 15, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z, n_5 element Z, n_6 element Z, n_7 element Z 2*3*5*7*11*13*17*19*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)mod1)=23
417 名前:132人目の素数さん mailto:sage [2024/01/18(木) 19:06:56.07 ID:N7iNgq1x.net] 2*3*((1/2+1/3)mod1)=5 2*3*5*((1/2+1/3+2/5)mod1)=7 2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11 2*3*5*7*11*((1/2+2/3+4/5+6/7+2/11)mod1)=13 2*3*5*7*11*13*((1/2+1/3+2/5+4/7+3/11+12/13)mod1)=17 2*3*5*7*11*13*17*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)mod1)=19 2*3*5*7*11*13*17*19*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)mod1)=23 2*3*5*7*11*13*17*19*23*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)mod1)=29
418 名前:132人目の素数さん mailto:sage [2024/01/18(木) 20:27:04.58 ID:N7iNgq1x.net] 2*3*((1/2+2/3)mod1)=1 2*3*5*((1/2+1/3+1/5)mod1)=1 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*11*((1/2+2/3+3/5+1/7+1/11)mod1)=1 2*3*5*7*11*13*((1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1 2*3*5*7*11*13*17*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1 2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 2*3*5*7*11*13*17*19*23*((1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1
419 名前:132人目の素数さん mailto:sage [2024/01/20(土) 01:50:25.84 ID:przZ0vAJ.net] ζ(s)=1/(1-2^(s-1))*1/(1-m^(s-1))*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/(m^(x-1)*(n)^x),{n, 1, ∞}] ζ(s)=0のとき ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/(m^(x-1)*(n)^x),{n, 1, ∞}]=0 ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn/m^(1/x)))/(mn/m^(1/x))^x),{n, 1, ∞}]=0 ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(n))/((n)^x),{n, 1, ∞}]=0 ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/((mn)^x),{mn, 1, ∞}]=0 ←n=mnも0 n=mn/m^(1/x))^xとおく ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn/m^(1/x))^x),{n, 1, ∞}]=0 mn番目の辺の傾きが e^(i*Im[zetazero[1]]*[ln(mn)])がe^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])に変動しても0になるときx=1/2
420 名前:132人目の素数さん mailto:sage [2024/01/20(土) 01:52:37.03 ID:przZ0vAJ.net] ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn/m^(1/x))^x),{n, 1, ∞}]=0 ζ(s)=1/m*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn)^x,{n, 1, ∞}]=0 以下の2つの式が同時に0になるときがx=1/2のときのみ ζ(s)=1/m*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)])/(mn)^x,{n, 1, ∞}]=0 ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn)^x,{n, 1, ∞}]=0
421 名前:132人目の素数さん mailto:sage [2024/01/20(土) 10:52:56.98 ID:przZ0vAJ.net] ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)])/(mn/m^(1/x))^x,{n, 1, ∞}]=0 ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn/m^(1/x))^x,{n, 1, ∞}]=0 ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)])/(mn/m^(1/x))^x,{n, 1, ∞}]=0 ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)-ln(m^(1/x))])/(mn/m^(1/x))^x,{n, 1, ∞}]=0 x=1/2のとき nを定数、mを変数としてみたとき符号が反転するのみ ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)])/(n/m)^1/2,{n, 1, ∞}]=0 ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[-ln(m)+ln(n)])/(n/m)^1/2,{n, 1, ∞}]=0
422 名前:132人目の素数さん mailto:sage [2024/01/20(土) 12:15:46.65 ID:rwBYdej7.net] 素数(prime number)なので、 p=2(m+3n)-3 ,[m,nは自然数] とおく m=1,n=1 のとき、p=5 m=2,n=1 のとき、p=7 m=1,n=2 のとき、p=11 m=2,n=2 のとき、p=13 m=1,n=3 のとき、p=17 m=2,n=3 のとき、p=19 m=1,n=4 のとき、p=23 m=1,n=5 のとき、p=29 m=2,n=5 のとき、p=31 m=2,n=6 のとき、p=37 m=1,n=7 のとき、p=41 m=2,n=7 のとき、p=43 m=1,n=8 のとき、p=47 m=1,n=9 のとき、p=53 m=1,n=10 のとき、p=59 m=2,n=10 のとき、p=61 … 2(m+3n)-3は必ず素数を含む m,nの並びに規則性はありますか?
423 名前:132人目の素数さん mailto:sage [2024/01/20(土) 23:45:50.27 ID:przZ0vAJ.net] 2*3*((1/2+1/3)mod1)=5 2*3*5*((1/2+1/3+2/5)mod1)=7 2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11 2*3*5*7*11*((1/2+2/3+4/5+6/7+2/11)mod1)=13 2*3*5*7*11*13*((1/2+1/3+2/5+4/7+3/11+12/13)mod1)=17 2*3*5*7*11*13*17*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)mod1)=19 2*3*5*7*11*13*17*19*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)mod1)=23 2*3*5*7*11*13*17*19*23*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)mod1)=29 (2*3)^2*((1/2+1/3)^2mod1)=5*5 (2*3*5)^2*((1/2+1/3+2/5)^2mod1)=7*67 (2*3*5*7)^2*((1/2+2/3+3/5+2/7)^2mod1)=11*23*37 (2*3*5*7*11)^2*((1/2+2/3+4/5+6/7+2/11)^2mod1)=13*13873 (2*3*5*7*11*13)^2*((1/2+1/3+2/5+4/7+3/11+12/13)^2mod1)=17*367*491 (2*3*5*7*11*13*17)^2*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)^2mod1)=19*29*140831 (2*3*5*7*11*13*17*19)^2*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)^2mod1)=23*31*3128933 (2*3*5*7*11*13*17*19*23)^2*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)^2mod1)=29*37*193*293*853
424 名前:132人目の素数さん mailto:sage [2024/01/20(土) 23:50:49.16 ID:przZ0vAJ.net] (Π[k=1~n)P(k))^1*((Σ(k=1~n)(X_k)/P(k))^1 mod 1)=P(n+1)を満たすとき (Π[k=1~n)P(k))^a*((Σ(k=1~n)(X_k)/P(k))^a mod 1)=P(n+1)*X aの値によらず出てくる値はP(n+1)(n+1番目の素数)を素因数にもつ (2*3*5*7*11*13*17*19*23)^5*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)^5mod1)=29×128516771×24671352289638928778049497411
425 名前:132人目の素数さん mailto:sage [2024/01/21(日) 01:27:30.21 ID:h+lG8rsE.net] 2*3*((1/2+2/3)mod1)=1 2*3*5*((1/2+1/3+1/5)mod1)=1 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*11*((1/2+2/3+3/5+1/7+1/11)mod1)=1 2*3*5*7*11*13*((1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1 2*3*5*7*11*13*17*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1 2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 2*3*5*7*11*13*17*19*23*((1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1 2*3*5*7*11*13*17*19*23*31*((1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=1 ((2*3)*((1/2+2/3))-1)/(2*3)=1 ((2*3*5)*(1/2+1/3+1/5)-1)/(2*3*5)=1 ((2*3*5*7)*(1/2+1/3+3/5+4/7)-1)/(2*3*5*7)=2 ((2*3*5*7*11)*(1/2+2/3+3/5+1/7+1/11)-1)/(2*3*5*7*11)=2 ((2*3*5*7*11*13)*(1/2+2/3+1/5+6/7+6/11+3/13)-1)/(2*3*5*7*11*13)=3 ((2*3*5*7*11*13*17)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)-1)/(2*3*5*7*11*13*17)=3 ((2*3*5*7*11*13*17*19)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)-1)/(2*3*5*7*11*13*17*19)=5 ((2*3*5*7*11*13*17*19*23)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)-1)/(2*3*5*7*11*13*17*19*23)=6 ((2*3*5*7*11*13*17*19*23*31)*(1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)-1)/(2*3*5*7*11*13*17*19*23*31)=5
426 名前:132人目の素数さん mailto:sage [2024/01/21(日) 01:38:17.45 ID:h+lG8rsE.net] ((2*3)*((1/2+1/3))-5)/(2*3)=0 ((2*3*5)*(1/2+1/3+2/5)-7)/(2*3*5)=1 ((2*3*5*7)*(1/2+2/3+3/5+2/7)-11)/(2*3*5*7)=2 ((2*3*5*7*11)*(1/2+2/3+4/5+6/7+2/11)-13)/(2*3*5*7*11)=3 ((2*3*5*7*11*13)*(1/2+1/3+2/5+4/7+3/11+12/13)-17)/(2*3*5*7*11*13)=3 ((2*3*5*7*11*13*17)*(1/2+1/3+2/5+3/7+8/11+11/13+13/17)-19)/(2*3*5*7*11*13*17)=4 ((2*3*5*7*11*13*17*19)*(1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)-1)/(2*3*5*7*11*13*17*19)=5 ((2*3*5*7*11*13*17*19*23)*(1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)-1)/(2*3*5*7*11*13*17*19*23)=4
427 名前:132人目の素数さん mailto:sage [2024/01/21(日) 16:00:31.91 ID:h+lG8rsE.net] (2*3*5*7*11)*((1/2+2/3+3/5+1/7+1/11)mod1)=1 (2*3*5*7*11)*((m/2+2m/3+3m/5+m/7+m/11)mod1)=1*m (2*3*5*7*11)*((13/2+2*13/3+3*13/5+13/7+13/11)mod1)=1*13 (2*3*5*7*11)*((2311/2+2*2311/3+3*2311/5+2311/7+2311/11)mod1)=2311=1=(2*3*5*7*11)*((1/2+2/3+3/5+1/7+1/11)mod1) (2*3*5*7*11)*((1/2+2/3+4/5+6/7+2/11)mod1)=13 (2*3*5*7*11)*((m/2+2m/3+4m/5+6m/7+2m/11)mod1)=13*m (2*3*5*7*11)*((1/2+2/3+2/5+1/7+4/11)mod1)=13*13
428 名前:132人目の素数さん mailto:sage [2024/01/21(日) 16:11:09.54 ID:h+lG8rsE.net] (2*3)*((2*3+1)*(a/2+b/3)mod1)=(2*3)*((a/2+b/3)mod1)=1 (2*3*5)*((2*3*5+1)*(a/2+b/3+c/5)mod1)=(2*3*5)*((a/2+b/3+c/5)mod1)=1 (2*3*5*7)*((2*3*5*7+1)*(a/2+b/3+c/5+d/7)mod1)=(2*3*5*7)*((a/2+b/3+c/5+d/7)mod1)=1 (2*3*5*7*11)*((2*3*5*7*11+1)*(a/2+b/3+c/5+d/7+e/11)mod1)=(2*3*5*7*11)*((a/2+b/3+c/5+d/7+e/11)mod1)=1 (2*3*5*7*11*13)*((2*3*5*7*11*13+1)*(a/2+b/3+c/5+d/7+e/11+f/13)mod1)=(2*3*5*7*11*13)*((a/2+b/3+c/5+d/7+e/11+f/13)mod1)=1
429 名前:132人目の素数さん mailto:sage [2024/01/21(日) 16:14:33.59 ID:h+lG8rsE.net] (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+m)*(a/2+b/3+c/5+d/7+e/11)mod1)=(2*3*5*7*11)*((a/2+b/3+c/5+d/7+e/11)mod1)=m N1からN5,mに何を入れても満たす
430 名前:132人目の素数さん mailto:sage [2024/01/21(日) 16:21:04.65 ID:h+lG8rsE.net] (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+13)*(1/2+2/3+4/5+6/7+2/11)mod1)=(2*3*5*7*11)*((1/2+2/3+4/5+6/7+2/11)mod1)=13 (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17)*(1/2+1/3+1/5+3/7+6/11)mod1)=(2*3*5*7*11)*((1/2+1/3+1/5+3/7+6/11)mod1)=17 (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17*13)*(1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=13*17 (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17)*(1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=17*13
431 名前:132人目の素数さん mailto:sage [2024/01/21(日) 16:29:48.78 ID:h+lG8rsE.net] (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17*13)*(1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=13*17 (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+13*17)*(1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=17*13 (2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)=13*17 (2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)は(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)でもあり、(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)でもある
432 名前:132人目の素数さん mailto:sage [2024/01/21(日) 16:54:06.76 ID:h+lG8rsE.net] (2^2*3*5*7*11+1)=4621は素数 (2*3*5*7*11)*((2^2*3*5*7*11+1)*(1/2+2/3+3/5+1/7+1/11)mod1)=1 (2^2*3^2*5*7*11+1)=13861=83*167は非素数 (2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1/2+2/3+3/5+1/7+1/11)mod1)=1 (2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1*83/2+2*83/3+3*83/5+1*83/7+1*83/11)mod1)=83=(2*3*5*7*11)*((1/2+1/3+4/5+6/7+6/11)mod1) (2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1*167/2+2*167/3+3*167/5+1*167/7+1*167/11)mod1)=167=(2*3*5*7*11)*((1/2+1/3+1/5+6/7+2/11)mod1) (2*3*5*7*11)*((1*167/2+1*167/3+4*167/5+6*167/7+6*167/11)mod1)=1=(2*3*5*7*11)*((1*83/2+1*83/3+1*83/5+6*83/7+2*83/11)mod1)
433 名前:132人目の素数さん mailto:sage [2024/01/21(日) 17:44:01.61 ID:h+lG8rsE.net] (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+ab)*(1/2+2/3+3/5+1/7+1/11)mod1)=ab (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+a)*(1/2+2/3+3/5+1/7+1/11)mod1)=a (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+b)*(1/2+2/3+3/5+1/7+1/11)mod1)=b 2*3*5*7*11+13*17=2531は素数 (2*3*5*7*11)*((1*13/2+2*13/3+3*13/5+1*13/7+1*13/11)mod1)=(2*3*5*7*11)*((1/2+2/3+4/5+6/7+2/11)mod1)=13 (2*3*5*7*11)*((1*17/2+2*17/3+3*17/5+1*17/7+1*17/11)mod1)=(2*3*5*7*11)*((1/2+1/3+1/5+3/7+6/11)mod1)=17 (2*3*5*7*11)*((1*13*17/2+2*13*17/3+3*13*17/5+1*13*17/7+1*13*17/11)mod1)=(2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)=13*17 (2*3*5*7*11)*0+13*17=221は非素数 (2*3*5*7*11)*(((2*3*5*7*11)*0+13)(1/2+2/3+3/5+1/7+1/11)mod1)=13 (2*3*5*7*11)*(((2*3*5*7*11)*0+17)(1/2+2/3+3/5+1/7+1/11)mod1)=17 (2*3*5*7*11)*((1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=221=13*17=(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1) 2*3*5*7*11-13*17=2089は素数 (2*3*5*7*11)*((2*3*5*7*11*1-13)(1/2+2/3+3/5+1/7+1/11)mod1)=2297 (2*3*5*7*11)*((2*3*5*7*11*1+17)(1/2+2/3+3/5+1/7+1/11)mod1)=17 (2*3*5*7*11)*((2*3*5*7*11*1-13*17)(1/2+2/3+3/5+1/7+1/11)mod1)=2089 (2*3*5*7*11)*((2*3*5*7*11*1-13)(1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)≠(2*3*5*7*11)*((2*3*5*7*11*1+17)(1*-13/2+1*-13/3+1*-13/5+3*-13/7+6*-13/11)mod1) となり等しくならないため
434 名前:132人目の素数さん mailto:sage [2024/01/21(日) 17:49:53.54 ID:h+lG8rsE.net] 2*3*5*7*11-13*17=2089は素数 (2*3*5*7*11)*((2*3*5*7*11*1-13)(1/2+2/3+3/5+1/7+1/11)mod1)=2297=(2*3*5*7*11)*((1/2+1/3+1/5+1/7+9/11)mod1) (2*3*5*7*11)*((2*3*5*7*11*1+17)(1/2+2/3+3/5+1/7+1/11)mod1)=17=(2*3*5*7*11)*((1/2+1/3+1/5+3/7+6/11)mod1) (2*3*5*7*11)*((2*3*5*7*11*1-13*17)(1/2+2/3+3/5+1/7+1/11)mod1)=2089 (2*3*5*7*11)*((2*3*5*7*11*1)(1*17/2+1*17/3+1*17/5+1*17/7+9*17/11)mod1)=(2*3*5*7*11)*((2*3*5*7*11*1)(1*-13/2+1*-13/3+1*-13/5+3*-13/7+6*-13/11)mod1) となるが2297*17=2089となり矛盾するため
435 名前:132人目の素数さん mailto:sage [2024/01/21(日) 19:42:06.24 ID:Vwy0a1ep.net] 1 21 212 1122 12111 221221 1212121… ?
436 名前:132人目の素数さん mailto:sage [2024/01/21(日) 21:11:23.80 ID:h+lG8rsE.net] (2*3*5*7*11*13)*(((2*3*5*7*11*13)-17)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+3/5+3/7+8/11+1/13)mod1)=30013 (2*3*5*7*11*13)*(((2*3*5*7*11*13)+19)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+4/5+2/7+4/11+5/13)mod1)=19 (2*3*5*7*11*13)*(((2*3*5*7*11*13)-17)*(1/2+2/3+4/5+2/7+4/11+5/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+2/5+1/7+9/11+6/13)mod1)=29707 (2*3*5*7*11*13)*(((2*3*5*7*11*13)+19)*(1/2+2/3+3/5+3/7+8/11+1/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+2/5+1/7+9/11+6/13)mod1)=29707 (2*3*5*7*11*13)*(((2*3*5*7*11*13)-17*19)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+4/5+2/7+4/11+5/13)mod1)=29707 (2*3*5*7*11*13)*(((2*3*5*7*11*13)-17)*((2*3*5*7*11*13)+19)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=29707 (2*3*5*7*11*13)*(61*487*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+2/5+1/7+9/11+6/13)mod1)=29707 (2*3*5*7*11*13)*(61*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+1/5+2/7+3/11+1/13)mod1) (2*3*5*7*11*13)*(487*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+2/5+3/7+7/11+5/13)mod1) (2*3*5*7*11*13)*(487*(1/2+2/3+1/5+2/7+3/11+1/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+2/5+1/7+9/11+6/13)mod1) (2*3*5*7*11*13)*(61*(1/2+2/3+2/5+3/7+7/11+5/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+2/5+1/7+9/11+6/13)mod1) (2*3*5*7*11*13)*(((2*3*5*7*11*13)-17)*((2*3*5*7*11*13)+19)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=29707 (2*3*5*7*11*13)*(((2*3*5*7*11*13)+61)*((2*3*5*7*11*13)+487)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=29707 (2^a*3^b*5^c*7^d*11^e*13^f)-17)*((2^g*3^h*5^i*7^j*11^k*13^l)+19)=(2^m*3^n*5^o*7^p*11^q*13^r)+61)*((2^s*3^t*5^u*7^v*11^w*13^x)+487) aからxまでに等式をみたす整数の組み合わせが存在するため非素数 (2*3*5*7*11*13)-17*19=29707=61*487
437 名前:132人目の素数さん mailto:sage [2024/01/21(日) 21:23:53.58 ID:h+lG8rsE.net] (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+m)*(a/2+b/3+c/5+d/7+e/11)mod1)=(2*3*5*7*11)*((a/2+b/3+c/5+d/7+e/11)mod1)=m を満たす整数a,b,c,d,eがあるとき (2*3*5*7*11)*((a/2+b/3+c/5+d/7+e/11)mod1)=1 (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+m)*(f/2+g/3+h/5+i/7+j/11)mod1)=(2*3*5*7*11)*((f/2+g/3+h/5+i/7+j/11)mod1)=X*m を満たす整数f,g,h,j,i,jがあるとき (2*3*5*7*11)*((f/2+g/3+h/5+i/7+j/11)mod1)=X f=X*a mod 2 g=X*b mod 3 h=X*c mod 5 i=X*d mod 7 j=X*e mod 11
438 名前:132人目の素数さん mailto:sage [2024/01/22(月) 01:30:59.88 ID:bZ4XMmSY.net] (2*3*5*7*11)*((2*3*5*7*11+1)*(2/2+1/3+1/5+2/7+2/11)mod1)=2のとき a,b,c,d,eには2で割り切れるように値を入れるとき (2a+2)/2 mod 2=1 (3b+1)/2 mod 3=2 (5c+1)/2 mod 5=3 (7d+2)/2 mod 7=1 (11e+2)/2 mod 11=1 (2*3*5*7*11)*((2*3*5*7*11+1)*(1/2+2/3+3/5+1/7+1/11)mod1)=1になる (2*3*5*7*11)*((2*3*5*7*11+m)*(1/2+2/3+3/5+1/7+1/11)mod1)=m (2*3*5*7*11)*((2*3*5*7*11+m)*(2/2+1/3+1/5+2/7+2/11)mod1)=2m (2*3*5*7*11)*((2*3*5*7*11+m)*(1/2+3/3+4/5+3/7+3/11)mod1)=3m (2*3*5*7*11)*((2*3*5*7*11+m)*((n mod2)/2+(2n mod3)/3+(3n mod3)/5+(n mod7)/7+(n mod11)/11)mod1)=n*m n=素数のとき 整数a,b(a=bの場合あり)が存在するとして ((n mod2)/2+(2*n mod3)/3+(3*n mod3)/5+(n mod7)/7+(n mod11)/11) mod 1= ((a mod2)/2+(2*a mod3)/3+(3*a mod3)/5+(a mod7)/7+(a mod11)/11) mod 1)*((b mod2)/2+(2*b mod3)/3+(3*b mod3)/5+(b mod7)/7+(b mod11)/11) mod 1)の形で表せない 2,3,5,7,11で割ってやって逆算で1の時の分子を求める (2*3*5*7*11)*((2*3*5*7*11+1)*(2/2+3/3+5/5+7/7+11/11)mod1)=2310*n(n=0含む) (2*3*5*7*11)*((2*3*5*7*11+1)*(1/2+3/3+5/5+7/7+11/11)mod1)=1155 (2*3*5*7*11)*((2*3*5*7*11+1)*(1/2+2/3+5/5+7/7+11/11)mod1)=385 (2*3*5*7*11)*((2*3*5*7*11+1)*(1/2+1/3+1/5+7/7+11/11)mod1)=77 (2*3*5*7*11)*((2*3*5*7*11+1)*(1/2+1/3+3/5+4/7+11/11)mod1)=11 (2*3*5*7*11)*((2*3*5*7*11+1)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
439 名前:132人目の素数さん mailto:sage [2024/01/23(火) 01:17:33.40 ID:Tn7R0RHf.net] (2*3*5*7*11)*((2*3*5*7*11+a)*(1/2+2/3+3/5+1/7+1/11)mod1)=a (2*3*5*7*11)*((2*3*5*7*11+b)*(1/2+2/3+3/5+1/7+1/11)mod1)=b (2*3*5*7*11)*((2*3*5*7*11+ab)*(1/2+2/3+3/5+1/7+1/11)mod1)=ab (2*3*5*7*11)*((2*3*5*7*11+a+b)*(1/2+2/3+3/5+1/7+1/11)mod1)=a+b c^n=a^n+b^n < 2*3*5*7*11=2310を満たす 整数a,b,c,nがあるとき (2*3*5*7*11)*((2*3*5*7*11+a^n+b^n)*(1/2+2/3+3/5+1/7+1/11)mod1)=a^n+b^n (2*3*5*7*11)*((2*3*5*7*11+c^n)*(1/2+2/3+3/5+1/7+1/11)mod1)=c^n (a^n+b^n) mod 2=c^n mod 2 2*(a^n+b^n) mod 3=2*c^n mod 3 3*(a^n+b^n) mod 5=3*c^n mod 5 (a^n+b^n) mod 7=c^n mod 7 (a^n+b^n) mod 11=c^n mod 11 2*3*5*7*11 未満に13以上の素因数の合成数で3次以上のものは13^3のみ 13^3=a^3+b^3とする時 (2*3*5*7*11)*((2*3*5*7*11+(a+b)^3-3ab(a+b))*(1/2+2/3+3/5+1/7+1/11)mod1)=a^3+b^3 1*[(a+b)^3-3ab(a+b)] mod 2 =1*c^3 mod 2 2*[(a+b)^3-3ab(a+b)] mod 3 =2*c^3 mod 3 ← 2*[(a+b)^3] mod 3= 2*c^3 mod 3 になるためa,b,cが存在しない 3*[(a+b)^3-3ab(a+b)] mod 5 =3*c^3 mod 5 1*[(a+b)^3-3ab(a+b)] mod 7 =1*c^3 mod 7 1*[(a+b)^3-3ab(a+b)] mod 11=1*c^3 mod 11 4次以上の時は随時 左辺の項から一部削除できるため存在しない 2[(a+b)^4-4ab*(a^2+b^2)-6(ab)^2] mod 3 = =2*c^4 mod 3 ← 2*[(a+b)^4-4ab*(a^2+b^2)] mod 3= 2*c^4 mod 3 になるためa,b,cが存在しない (2乗のときのみ 1*[(a+b)^2-2ab] mod 2 =1*c^3 mod 2 ← 1*[(a+b)^2] mod 2= 1*c^2 mod 2 になるもののピタゴラス数は偶数^2+奇数^2=奇数^2で表現されるため問題なし 2*[(a+b)^2-2ab] mod 3 =2*c^3 mod 3 3*[(a+b)^2-2ab] mod 5 =3*c^3 mod 5 1*[(a+b)^2-2ab] mod 7 =1*c^3 mod 7 1*[(a+b)^2-2ab] mod 11=1*c^3 mod 11
440 名前:132人目の素数さん mailto:sage [2024/01/23(火) 01:25:02.01 ID:Tn7R0RHf.net] ((a+b)^n-n*((a^n-1*b^1)+(a^1-1*b^n-1))-・・・)=a^n+b^n=c^n ((a+b)^n-n*((a^n-1*b^1)+(a^1-1*b^n-1))-・・・) mod n=a^n+b^n mod n=c^n mod n ← n*((a^n-1*b^1)+(a^1-1*b^n-1))の項目が削除できてしまう 2式を同時に満たすことになるため矛盾する ((a+b)^n-n*((a^n-1*b^1)+(a^1-1*b^n-1))-・・・) mod n=a^n+b^n mod n=c^n mod n ((a+b)^n-・・・) mod n=a^n+b^n mod n=c^n mod n
441 名前:132人目の素数さん mailto:sage [2024/01/23(火) 01:57:36.90 ID:Tn7R0RHf.net] 1*[(a+b)^3-3ab(a+b)] mod 2 =1*c^3 mod 2 2*[(a+b)^3-3ab(a+b)] mod 3 =2*c^3 mod 3 ← 2*[(a+b)^3] mod 3= 2*c^3 mod 3 になるものの 2*[(a+b)^3] mod 3= 2*c^3 mod 3 2*[a^3+b^3] mod 3= 2*c^3 mod 3 この2式を同時に満たすパターンが a=3x+1,3x+2,3x b=3y+1,3y+2,3y 2*[(3x+1+3y+1)^3] mod 3 =2*(3z+2)^3 mod 3 2*[(3x+1)^3+(3y+1)^3] mod 3 =2*(3z+2)^3 mod 3 c=3z+1,3z+2,3z で存在するものの (2*3*5*7*11)*((2*3*5*7*11+(3x+1+3y+1)^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=(2*3*5*7*11)*((2*3*5*7*11+(3z+2)^3)*(1/2+2/3+3/5+1/7+1/11)mod1) (2*3*5*7*11)*((2*3*5*7*11+(3x+1)^3+(3y+1)^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=(2*3*5*7*11)*((2*3*5*7*11+(3z+2)^3)*(1/2+2/3+3/5+1/7+1/11)mod1)になるため (3x+1+3y+1)^3が2*3*5*7*11未満に収まらなければいけないものの、13^3が最大の3次以上の整数値のため、(13-a)^3+a^3 <13^3 を0<a<13の範囲で満たす以上解が存在しない
442 名前:132人目の素数さん mailto:sage [2024/01/23(火) 14:15:23.36 ID:Mcun6w+O.net] 素数(prime number)なので、 p=2(m+3n)-3 , [m,nは自然数,m≦2] とおく m=1,n=1 のとき、p=5 m=2,n=1 のとき、p=7 m=1,n=2 のとき、p=11 m=2,n=2 のとき、p=13 m=1,n=3 のとき、p=17 m=2,n=3 のとき、p=19 m=1,n=4 のとき、p=23 m=1,n=5 のとき、p=29 m=2,n=5 のとき、p=31 m=2,n=6 のとき、p=37 m=1,n=7 のとき、p=41 m=2,n=7 のとき、p=43 m=1,n=8 のとき、p=47 m=1,n=9 のとき、p=53 m=1,n=10 のとき、p=59 m=2,n=10 のとき、p=61 m=2,n=11 のとき、p=67 m=1,n=12 のとき、p=71 m=2,n=12 のとき、p=73 m=2,n=13 のとき、p=79 m=1,n=14 のとき、p=83 m=1,n=15 のとき、p=89 m=2,n=16 のとき、p=97
443 名前:132人目の素数さん mailto:sage [2024/01/23(火) 14:16:18.77 ID:Tn7R0RHf.net] (2*3*5*7*11)*((2*3*5*7*11+13^2)*(1/2+2/3+3/5+1/7+1/11)mod1)=169 (2*3*5*7*11)*((2*3*5*7*11+13^4)*(1/2+2/3+3/5+1/7+1/11)mod1)=841 (2*3*5*7*11)*((2*3*5*7*11+13^8)*(1/2+2/3+3/5+1/7+1/11)mod1)=421 (2*3*5*7*11)*((2*3*5*7*11+13^16)*(1/2+2/3+3/5+1/7+1/11)mod1)=41^2 (2*3*5*7*11)*((2*3*5*7*11+13^32)*(1/2+2/3+3/5+1/7+1/11)mod1)=631 (2*3*5*7*11)*((2*3*5*7*11+13^64)*(1/2+2/3+3/5+1/7+1/11)mod1)=841 (2*3*5*7*11)*((2*3*5*7*11+13^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=13^3 (2*3*5*7*11)*((2*3*5*7*11+13^9)*(1/2+2/3+3/5+1/7+1/11)mod1)=853 (2*3*5*7*11)*((2*3*5*7*11+13^27)*(1/2+2/3+3/5+1/7+1/11)mod1)=1987 (2*3*5*7*11)*((2*3*5*7*11+13^81)*(1/2+2/3+3/5+1/7+1/11)mod1)=13 (2*3*5*7*11)*((2*3*5*7*11+13^5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1693 (2*3*5*7*11)*((2*3*5*7*11+13^25)*(1/2+2/3+3/5+1/7+1/11)mod1)=1693 (2*3*5*7*11)*((2*3*5*7*11+13^125)*(1/2+2/3+3/5+1/7+1/11)mod1)=1693
444 名前:132人目の素数さん mailto:sage [2024/01/23(火) 14:16:27.35 ID:Mcun6w+O.net] m=1,n=17 のとき、p=101 m=2,n=17 のとき、p=103 m=1,n=18 のとき、p=107 m=2,n=18 のとき、p=109 m=1,n=19 のとき、p=113 m=2,n=21 のとき、p=127 m=1,n=22 のとき、p=131 m=1,n=23 のとき、p=137 m=2,n=23 のとき、p=139 m=1,n=25 のとき、p=149 m=2,n=25 のとき、p=151 m=2,n=26 のとき、p=157 m=2,n=27 のとき、p=163 m=1,n=28 のとき、p=167 m=1,n=29 のとき、p=173 m=1,n=30 のとき、p=179 m=2,n=30 のとき、p=181 m=1,n=32 のとき、p=191 m=2,n=32 のとき、p=193 m=1,n=33 のとき、p=197 m=2,n=33 のとき、p=199 m=2,n=35 のとき、p=211 m=2,n=37 のとき、p=223 m=1,n=38 のとき、p=227 …
445 名前:132人目の素数さん mailto:sage [2024/01/23(火) 14:18:45.13 ID:Mcun6w+O.net] mの数列 121212112212111221221 121212112122211121212221 010101001101000110110 010101001011100010101110 サンプリングデータ抽出
446 名前:132人目の素数さん mailto:sage [2024/01/23(火) 14:19:08.67 ID:Tn7R0RHf.net] (2*3*5*7*11)*((2*3*5*7*11+13^7)*(1/2+2/3+3/5+1/7+1/11)mod1)=1987 (2*3*5*7*11)*((2*3*5*7*11+13^49)*(1/2+2/3+3/5+1/7+1/11)mod1)=853 (2*3*5*7*11)*((2*3*5*7*11+13^7^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=13^3 (2*3*5*7*11)*((2*3*5*7*11+13^7^4)*(1/2+2/3+3/5+1/7+1/11)mod1)=13 (2*3*5*7*11)*((2*3*5*7*11+13^11)*(1/2+2/3+3/5+1/7+1/11)mod1)=937 (2*3*5*7*11)*((2*3*5*7*11+13^11^2)*(1/2+2/3+3/5+1/7+1/11)mod1)=13 (2*3*5*7*11)*((2*3*5*7*11+13^11^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=937
447 名前:132人目の素数さん mailto:sage [2024/01/23(火) 14:26:29.53 ID:Tn7R0RHf.net] (2*3*5*7*11)*((2*3*5*7*11+17^4)*(1/2+2/3+3/5+1/7+1/11)mod1)=19^2 (2*3*5*7*11)*((2*3*5*7*11+17^8)*(1/2+2/3+3/5+1/7+1/11)mod1)=961 (2*3*5*7*11)*((2*3*5*7*11+17^16)*(1/2+2/3+3/5+1/7+1/11)mod1)=1831 (2*3*5*7*11)*((2*3*5*7*11+17^32)*(1/2+2/3+3/5+1/7+1/11)mod1)=751 (2*3*5*7*11)*((2*3*5*7*11+17^64)*(1/2+2/3+3/5+1/7+1/11)mod1)=19^2 (2*3*5*7*11)*((2*3*5*7*11+17^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=293 (2*3*5*7*11)*((2*3*5*7*11+17^9)*(1/2+2/3+3/5+1/7+1/11)mod1)=167 (2*3*5*7*11)*((2*3*5*7*11+17^27)*(1/2+2/3+3/5+1/7+1/11)mod1)=503 (2*3*5*7*11)*((2*3*5*7*11+m^a^n)*(1/2+2/3+3/5+1/7+1/11)mod1) mに169より小さい素数、aに2,3,5,7,11のうちのいずれかの素数、nの値を変えると でてくる値Xが素数か、単一の素数の乗数になる
448 名前:132人目の素数さん mailto:sage [2024/01/23(火) 19:54:53.57 ID:Tn7R0RHf.net] 2*3*5*7*11*13*((17^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=5477 2*3*5*7*11*13*((19^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=2749 2*3*5*7*11*13*((23^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=23 2*3*5*7*11*13*((29^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=19139 2*3*5*7*11*13*((31^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=19141 2*3*5*7*11*13*((37^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=10957 2*3*5*7*11*13*((41^125*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=461 2*3*5*7*11*13*((41^7^2*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=13691 2*3*5*7*11*13*((41^7^4*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=41 2*3*5*7*11*13*((43^7^4*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=43 2*3*5*7*11*13*((43^3^3*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=19447
449 名前:132人目の素数さん mailto:sage [2024/01/23(火) 20:18:13.17 ID:Tn7R0RHf.net] 2*3*5*7*11*13-17^5=-1389827=-719*1933≠113*191=21583 2*3*5*7*11*13*(((2*3*5*7*11*13-17^5)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 2*3*5*7*11*13*(((113*191)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 2*3*5*7*11*13*(((-719*1933)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 2*3*5*7*11*13*(((113*191)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 (-719*1933) mod (2*3*5*7*11*13) =(113*191) (-719*1933) mod 2 = (113*191) mod 2 (-719*1933) mod 3 = (113*191) mod 3 (-719*1933) mod 5 = (113*191) mod 5 (-719*1933) mod 7 = (113*191) mod 7 (-719*1933) mod 11 = (113*191) mod 11 (-719*1933) mod 13 = (113*191) mod 13 2*3*5*7*11*13*(((2*3*5*7*11*13-17^4)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=6569 (-149*359) mod (2*3*5*7*11*13) = (6569*1) 2*3*5*7*11*13*(((-149*359)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=6569=6569*1 2*3*5*7*11*13*(((6569*1)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=6569 (-149*359) mod 2= (6569*1) mod 2 (-149*359) mod 3= (6569*1) mod 3 (-149*359) mod 5= (6569*1) mod 5 (-149*359) mod 7= (6569*1) mod 7 (-149*359) mod 11= (6569*1) mod 11 (-149*359) mod 13= (6569*1) mod 13
450 名前:132人目の素数さん mailto:sage [2024/01/23(火) 20:34:16.22 ID:Tn7R0RHf.net] 2*3*5*7*11*13-17^5=-1389827=-719*1933≠113*191=21583 2*3*5*7*11*13*(((2*3*5*7*11*13-17^5)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 2*3*5*7*11*13*(((113*191)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 2*3*5*7*11*13*(((-719*1933)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 2*3*5*7*11*13*(((113*191)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 2*3*5*7*11*13*(((-17^5)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 (-17^5) mod (2*3*5*7*11*13) =(-719*1933) mod (2*3*5*7*11*13) =(113*191) (-719*1933) mod 2 = (113*191) mod 2 = (‐17^5) mod 2 (-719*1933) mod 3 = (113*191) mod 3 = (‐17^5) mod 3 (-719*1933) mod 5 = (113*191) mod 5 = (‐17^5) mod 5 (-719*1933) mod 7 = (113*191) mod 7 = (‐17^5) mod 7 (-719*1933) mod 11 = (113*191) mod 11 = (‐17^5) mod 11 (-719*1933) mod 13 = (113*191) mod 13 = (‐17^5) mod 13
451 名前:132人目の素数さん mailto:sage [2024/01/24(水) 23:28:21.20 ID:eNK6ElFR.net] e^(i*2pi*(((2*3*5*7*11*13+X)*(1/2+2/3+1/5+6/7+6/11+3/13))))=e^(i*2pi*X/(2*3*5*7*11*13)) e^(i*2pi*X/2)*e^(i*2pi*2X/3)*e^(i*2pi*X/5)*e^(i*2pi*6X/7)*e^(i*2pi*6X/11)*e^(i*2pi*3*X/13)=e^(i*2pi*X/(2*3*5*7*11*13)) e^(i*2pi*33/2)*e^(i*2pi*2*28/3)*e^(i*2pi*29/5)*e^(i*2pi*6*33/7)*e^(i*2pi*6*30/11)*e^(i*2pi*3*32/13)=e^(i*2pi*19/(2*3*5*7*11*13))
452 名前:132人目の素数さん mailto:sage [2024/01/24(水) 23:37:57.40 ID:eNK6ElFR.net] e^(i*2pi*31/2)*e^(i*2pi*2*28/3)*e^(i*2pi*29/5)*e^(i*2pi*6*33/7)*e^(i*2pi*6*30/11)*e^(i*2pi*3*32/13)=e^(i*2pi*19/(2*3*5*7*11*13)) e^(i*2pi*7/2)*e^(i*2pi*2*11/3)*e^(i*2pi*8/5)*e^(i*2pi*6*9/7)*e^(i*2pi*6*12/11)*e^(i*2pi*3*10/13)=e^(i*2pi*23/(2*3*5*7*11*13))
453 名前:132人目の素数さん mailto:sage [2024/01/24(水) 23:39:57.80 ID:eNK6ElFR.net] e^(i*2pi*9/2)*e^(i*2pi*2*5/3)*e^(i*2pi*4/5)*e^(i*2pi*6*8/7)*e^(i*2pi*6*7/11)*e^(i*2pi*3*3/13)=e^(i*2pi*29/(2*3*5*7*11*13))
454 名前:132人目の素数さん mailto:sage [2024/01/25(木) 00:05:34.68 ID:A9cOXR3Y.net] e^(i*2pi*(((2*3*5*7*11*13+19)*(1/2+2^3/3+1/5+6^7/7+6^11/11+3^13/13))))=e^(i*2pi*19/(2*3*5*7*11*13))
455 名前:132人目の素数さん mailto:sage [2024/01/26(金) 22:04:52.17 ID:Dz6ppHM6.net] > 2*3*((1/2+2/3)mod1)=1 > 2*3*5*((1/2+1/3+1/5)mod1)=1 > 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 > 2*3*5*7*11*((1/2+2/3+3/5+1/7+1/11)mod1)=1 > 2*3*5*7*11*13*((1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1 > 2*3*5*7*11*13*17*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1 > 2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 > 2*3*5*7*11*13*17*19*23*((1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1 > 2*3*5*7*11*13*17*19*23*31*((1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=1 > > 2*3*5*7*11*13*17*19*23*31*(31*(1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=31 > > 2*3*5*7*11*13*17*19*23*31*((1/2+2*31/3+4*31/5+1*31/7+2*31/11+4*31/13+1*31/17+17*31/19+14*31/23+26*31/31)mod1)=31 > > 2*3*5*7*11*13*17*19*23*31*((31/2+2*31/3+4*31/5+1*31/7+2*31/11+4*31/13+1*31/17+17*31/19+14*31/23)mod1)=31 > > 2*3*5*7*11*13*17*19*23*((1/2+2*31/3+4*31/5+1*31/7+2*31/11+4*31/13+1*31/17+17*31/19)mod1)=1 > > 2*3*5*7*11*13*17*19*23*((1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1 > > 2*3*5*7*11*13*17*19*23*(23*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=23 > > 2*3*5*7*11*13*17*19*((23/2+2*23/3+4*23/5+3*23/7+7*23/11+7*23/13+14*23/17+14*23/19)mod1)=1 > > 2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 > > 無限に繰り返すと↓に収束する > 2*3*((1/2+2/3)mod1)=1 >
456 名前:132人目の素数さん mailto:sage [2024/01/26(金) 22:18:42.00 ID:Dz6ppHM6.net] P(k)=k番目の素数 1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)をかけて1になるとき 2*3*5*7*11*・・・*P(n)*((a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=1のとき a2*Π(k=3~n)P(k) mod 3=2になる ←3の分子に3からn番目の素数をかけて3で割ると2になる
457 名前:132人目の素数さん mailto:sage [2024/01/26(金) 22:31:40.45 ID:Dz6ppHM6.net] P(k)=k番目の素数 1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)をかけて1になるとき 2*3*5*7*11*・・・*P(n)*((a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=1のとき ak*Π(m=1~n(kを除く))P(m) mod P(k)=1になる ←k番目の素数の分子にk番目を除く1からn番目の素数をかけてk番目の素数で割るとすべて1になる > 2*3*5*7*11*13*17*19*23*31*((1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=1 23に関して試すと14/23のため 分子ak=14 14*2*3*5*7*11*13*17*19*31 mod 23 =1 17に関して試すと1/17のため 分子ak=1 2*3*5*7*11*13*19*23*31 mod 17=1
458 名前:132人目の素数さん mailto:sage [2024/01/26(金) 22:48:00.43 ID:Dz6ppHM6.net] 2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=1 (12)*2*3*5*7*11*13*17*19*23 mod 29 =1 (11)*2*3*5*7*11*13*17*19*29 mod 23 =1 (4)*2*3*5*7*11*13*19*23*29 mod 17 =1
459 名前:132人目の素数さん mailto:sage [2024/01/26(金) 23:03:14.92 ID:6pWfMnml.net] 2 3 2+3=5 2^2+3=7 2+3^2=11 2^2+3^2=13 2^3+3^2=17 2^4+3=19
460 名前:132人目の素数さん mailto:sage [2024/01/27(土) 16:07:27.75 ID:G74Xg1V/.net] (29-1)! mod 29 =-1 (12)*2*3*5*7*11*13*17*19*23 mod 29 =1 ((12)*2*3*5*7*11*13*17*19*23+(29-1)!)mod 29 =0 ((12)+4*6*8*9*10*12*14*15*16*18*20*21*22*24*25*26*27*28)*(2*3*5*7*11*13*17*19*23) mod 29 =0 ((12)+4*6*8*9*10*12*14*15*16*18*20*21*22*24*25*26*27*28) mod 29 =0 29-(4*6*8*9*10*12*14*15*16*18*20*21*22*24*25*26*27*28) mod 29) =12 (4*6*8*9*10*12*14*15*16*18*20*21*22*24*25*26*27*28)=1366643159020339200000 2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23-1366643159020339200000/29)mod1)=1 (2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i*29^j)未満の2,3,5,7,11,13,17,19,23,29を素因数に持たない数をXとおく Xに若い数から順に入れて足すと1か0になる -1^10=Σe^(i*2pi*(X/(2^1*3^1*5^1*7^1*11^1*13^1*17^1*19^1*23^1*29^1))(a=1,b=1,c=1,d=1,e=1,f=1,g=1,h=1,i=1,j=1のとき) 0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i*29^j)) (a,b,c,d,e,f,g,h,i,j>1のとき)
461 名前:132人目の素数さん mailto:sage [2024/01/27(土) 16:54:49.13 ID:G74Xg1V/.net] 2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=1 2*3*5*7*11*13*17*19*23*29*(19*(1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=19 2*3*5*7*11*13*17*23*29*((19/2+19/3+19/5+3*19/7+19/11+11*19/13+4*19/17+9*19/19+11*19/23+12*19/29)mod1)=1 2 *3*5*7*11*13*17*23*29*((1/2+1/3+4/5+1/7+8/11+1/13+8/17+2/23+25/29)mod1)=1 2*3*5*7*11*13*17*19*23*29*((1/2+1/3+4/5+1/7+8/11+1/13+8/17+2/23+25/29)mod1)=19 2*3*5*7*11*13*17*23*29*((1/2+19/3+4*19/5+19/7+8*19/11+19/13+8*19/17+2*19/23+25*19/29)mod1)=19 2*3*5*7*11*13*17*23*29*((1/2+1/3+1/5+5/7+9/11+6/13+16/17+15/23+11/29)mod1)=19 19=((1/2+1/3+4/5+1/7+8/11+1/13+8/17+2/23+25/29)mod1)/((1/2+1/3+1/5+5/7+9/11+6/13+16/17+15/23+11/29)mod1) 素数は素数の逆数和を1で割った余りを素数の逆数和を1で割った余りで割ることで表現できる
462 名前:132人目の素数さん mailto:sage [2024/01/27(土) 21:34:04.31 ID:G74Xg1V/.net] P(k)=k番目の素数 1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)をかけてP(n+1)になるとき 2*3*5*7*11*・・・*P(n)*((a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=P(n+1)のとき ak*Π(m=1~n(kを除く))P(m) mod P(k)=P(n+1)-P(k)*Aになる ←k番目の素数の分子にk番目を除く1からn番目の素数をかけてk番目の素数で割るとすべてP(n+1)-P(k)*Aになる 2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19+19/23+24/29)mod1)=31 2*3*5*7*11*13*17*19*23*29*24/29 mod 29=2=31-29 2*3*5*7*11*13*17*19*23*29*19/23 mod 23=8=31-23 2*3*5*7*11*13*17*19*23*29*13/19 mod 19=12=31-19 2*3*5*7*11*13*17*19*23*29*5/17 mod 17=14=31-17 2*3*5*7*11*13*17*19*23*29*3/13 mod 13=5=31-13*2
463 名前:132人目の素数さん mailto:sage [2024/01/27(土) 21:38:29.39 ID:G74Xg1V/.net] 2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19+19/23+24/29)mod1)=31 2*3*5*7*11*13*17*19*23*(29*(1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19+19/23)mod1)=31 2*3*5*7*11*13*17*19*(23*29*(1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19)mod1)=31 2*3*5*7*11*13*17*(19*23*29*(1/2+1/3+1/5+2/7+9/11+3/13+5/17)mod1)=31 2*3*5*7*11*13*(17*19*23*29*(1/2+1/3+1/5+2/7+9/11+3/13)mod1)=31 2*3*5*7*11*(13*17*19*23*29*(1/2+1/3+1/5+2/7+9/11)mod1)=31 2*3*5*7*(11*13*17*19*23*29*(1/2+1/3+1/5+2/7)mod1)=31 2*3*5*(7*11*13*17*19*23*29*(1/2+1/3+1/5)mod1)=1≠31 ←2*3*5=30までの数字しか表現できないため
464 名前:132人目の素数さん mailto:sage [2024/01/28(日) 00:30:41.63 ID:po+iLZw6.net] 2*3*5*7*(11*13*17*19*23*29*(1/2+1/3+1/5+2/7)mod1)=31 3*5*7*(2*11*13*17*19*23*29*(1/3+1/5+2/7)mod1)=31 ←3*5*7=105まで表現できるため 2*3*5*7*11*13*17*19*23*29*(1*(1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=1 2*3*2*3*5*7*11*13*17*19*23*29*(1/2*1/3*(1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=25878772921=2*3*5*7*11*13*17*19*23*29+1≠1 2^2*3^2*5*7*11*13*17*19*23*29*(1*(1/2^2+2/3^2+1/5+4/7+2/11+4/13+12/17+11/19+21/23+2/29)mod1)=1
465 名前:132人目の素数さん mailto:sage [2024/01/28(日) 02:43:09.06 ID:po+iLZw6.net] A,B,Cが互いに素な時 (2*3*5*7*11)^3*(1*(3/2^3+8/3^3+42/5^3+190/7^3+584/11^3)mod1)=1 (2*3*5*7*11)^3*(C^3*(3/2^3+8/3^3+42/5^3+190/7^3+584/11^3)mod1)=A^3+B^3 C=11*X (2*3*5*7*11)^3*(11^3*X^3*(3/2^3+8/3^3+42/5^3+190/7^3)mod1)=A^3+B^3 11^3*C^3*(2*3*5*7)^3*((3/2^3+8/3^3+42/5^3+190/7^3)mod1)=A^3+B^3 ←AとBが互いに素なことに反する
466 名前:132人目の素数さん mailto:sage [2024/01/28(日) 23:01:48.14 ID:po+iLZw6.net] 2*3*5*7*11*(13*17(1/2+2/3+3/5+1/7+1/11)mod1)=13*17 2*3*5*7*(13*17(1/2+1/3+3/5+4/7+11/11)mod1)=11≠13*17 2*3*5*7*11*(13*17(1/2+2/3+3/5+1/7+11/11)mod1)=11 2*3*5*7*11*(13^3*17^3*(1/2+2/3+3/5+1/7+1/11)mod1)=1541=23*67 2*3*5*7*(13^3*17^3(1/2+1/3+3/5+4/7+11/11)mod1)=71≠23*67 ←2,3,5,7で割り切れなくて11^2未満の数になるため素数になる 2*3*5*7*11*(13^3*17^3(1/2+1/3+3/5+4/7+11/11)mod1)=71
467 名前:132人目の素数さん mailto:sage [2024/01/28(日) 23:04:33.56 ID:po+iLZw6.net] P(k)=k番目の素数 1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子) 2*3*5*7*11*・・・*P(n)*(P(x)*P(y)*(a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=[P(x)*P(y) mod 2*3*5*7*11*・・・*P(n)]として 2*3*5*7*11*・・・*P(n)→2*3*5*7*11*・・・*P(n-1)と最大素数から順に右辺にずらしていき生成される数の上限値を下げて、無理やり素数にする
468 名前:132人目の素数さん mailto:sage [2024/01/28(日) 23:10:43.29 ID:po+iLZw6.net] 2*3*5*7*(11*13^a*17^b*(1/2+2/3+3/5+1/7+1/11)mod1)=151 2*3*5*7*(11*13^4*17^4*(1/2+2/3+3/5+1/7+1/11)mod1)=151 2*3*5*7*(11*13^5*17^4*(1/2+2/3+3/5+1/7+1/11)mod1)=73 2*3*5*7*(11*13^4*17^5*(1/2+2/3+3/5+1/7+1/11)mod1)=47 2*3*5*7*(11*13^5*17^5*(1/2+2/3+3/5+1/7+1/11)mod1)=191 2*3*5*7*(11*13^6*17^5*(1/2+2/3+3/5+1/7+1/11)mod1)=173 2*3*5*7*(11*13^5*17^6*(1/2+2/3+3/5+1/7+1/11)mod1)=97 2*3*5*7*(11*13^6*17^6*(1/2+2/3+3/5+1/7+1/11)mod1)=1 2*3*5*7*(11*13^7*17^6*(1/2+2/3+3/5+1/7+1/11)mod1)=13 2*3*5*7*(11*13^6*17^7*(1/2+2/3+3/5+1/7+1/11)mod1)=17 2*3*5*7*(11*13^7*17^7*(1/2+2/3+3/5+1/7+1/11)mod1)=11 2*3*5*7*(11*13^3*17^9*(1/2+2/3+3/5+1/7+1/11)mod1)=29 2*3*5*7*(11*13^3*17^8*(1/2+2/3+3/5+1/7+1/11)mod1)=11*17 ←a.b.の取り方でははずれが混じる
469 名前:132人目の素数さん mailto:sage [2024/01/28(日) 23:19:09.53 ID:po+iLZw6.net] 2*3*5*(7*11*13^a*17^b*(1/2+2/3+3/5+1/7+1/11)mod1) ←a,bにどの整数を入れてもすべて素数になる(30未満で2,3,5を素因数に持たないため) 2*3*5*(7*11*13^2*17^2*(1/2+2/3+3/5+1/7+1/11)mod1)=1 2*3*5*(7*11*13^3*17^2*(1/2+2/3+3/5+1/7+1/11)mod1)=13 2*3*5*(7*11*13^2*17^3*(1/2+2/3+3/5+1/7+1/11)mod1)=17 2*3*5*(7*11*13^3*17^3*(1/2+2/3+3/5+1/7+1/11)mod1)=11 2*3*5*(7*11*13^3*17^4*(1/2+2/3+3/5+1/7+1/11)mod1)=7 2*3*5*(7*11*13^3*17^5*(1/2+2/3+3/5+1/7+1/11)mod1)=29 2*3*5*(7*11*13^6*17^4*(1/2+2/3+3/5+1/7+1/11)mod1)=19 2*3*5*(7*11*13^8*17^3*(1/2+2/3+3/5+1/7+1/11)mod1)=23
470 名前:132人目の素数さん mailto:sage [2024/01/28(日) 23:53:40.63 ID:po+iLZw6.net] 2*3*5*7*11*(13*17*(13*17*19*23*29*31*37*41*43*47)^5*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1871 2*3*5*7*11*(13*17*(13*17*19*23*29*31*37*41*43*47)^7*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=641 2*3*5*7*11*(13*17*(13*17*19*23*29*31*37*41*43*47)^9*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=911 2*3*5*7*11*(13*17*(13*17*19^3*23*29*31^2*37*41*43*47)^11*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=401 2*3*5*7*11*(13*17*(13*17*19^2*23^2*29*31^3*37*41*43*47)^13*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=997 2*3*5*7*11*(13*17*(13^2*17^2*19^2*23^2*29*31^3*37*41*43*47)^13*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=887 2*3*5*7*11*(13*17*(13^2*17*19^2*23^2*29*31^3*37*41*43*47)^13*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=991 2*3*5*7*11*(13*17*(13^2*17*19^2*23^2*29*31^3*37^4*41*43*47)^13*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1873 指数部をいじると2*3*5*7*11未満の2,3,5,7,11を素因数に持たない数が出る。
471 名前:132人目の素数さん mailto:sage [2024/01/30(火) 23:08:55.21 ID:dPQs+Sll.net] a×b(c×d(1/a+1/b) mod 1)=c×n <a×b と非素数になってしまった場合 cの指数部を増やすことでcの素因数を消せる cn mod ab =cn <ab c^2×n mod ab = c^2n-abとなるため(ただし√ab未満の他の素因数を新たに持つ可能性がある) その場合c×dのあとにその素因数を掛けて素因数を消す
472 名前:132人目の素数さん mailto:sage [2024/01/31(水) 13:39:20.72 ID:qNFnHH4o.net] 2*3*5*7*11*(product[prime[k],{k,6,40}]^n(1/2+2/3+3/5+1/7+1/11)mod1) 2310未満の合成数の最大素因数では40番目の素数までしか存在しないため 6番目から40番目の素数をかければ高い確率で素数になる
473 名前:132人目の素数さん mailto:sage [2024/01/31(水) 13:41:51.08 ID:qNFnHH4o.net] 2*3*5*7*11*(product[prime[k],{k,6,40}]^13(1/2+2/3+3/5+1/7+1/11)mod1)=31 nを大きくして11^二未満にする
474 名前:132人目の素数さん mailto:sage [2024/02/02(金) 22:04:22.54 ID:fHMdAo0V.net] 2*3*5*7*11*(product[prime[k],{k,6,100}]^n(1/2+2/3+3/5+1/7+1/11)mod1) n=1 989 n=2 991 n=3 659 n=4 331 n=5 1649 n=6 1 n=7 989 2*3*5*7*11*(product[prime[k],{k,6,41}]^n(1/2+2/3+3/5+1/7+1/11)mod1) n=1 89 n=2 991 n=3 419 n=4 331 n=5 1739 n=6 1 n=7 89
475 名前:132人目の素数さん mailto:sage [2024/02/02(金) 22:08:02.69 ID:fHMdAo0V.net] P(k)=k番目の素数 1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子) 2*3*5*7*11*・・・*P(n)*(X*(a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=X mod 2*3*5*7*11*・・・*P(n)] Xに2*3*5*7*11*・・・*P(n)未満の数が含む最大の素因数よりも大きな素因数が混じると 吐き出されるX mod 2*3*5*7*11*・・・*P(n)] が循環しなくなる(n=0のときの1に戻ってくることがなくなる) 2*3*5*7*11*(product[prime[k],{k,6,m}]^n(1/2+2/3+3/5+1/7+1/11)mod1) 2*3*5*7*11*(product[prime[k],{k,6,39}]^n(1/2+2/3+3/5+1/7+1/11)mod1)=X n=1 X=1997 n=2 X=949 n=3 X=953
476 名前:132人目の素数さん mailto:sage [2024/02/03(土) 13:28:02.83 ID:RnpFDdRt.net] 2*3*5*7*(11^60*(1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*11*(13^60*(1/2+2/3+3/5+1/7+1/11)mod1)=1 2*3*5*7*11*13*(17^60*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1 2*3*5*7*11*13*17*(19^120*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1 2*3*5*7*11*13*17*19*(23^720*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
477 名前:132人目の素数さん mailto:sage [2024/02/03(土) 20:39:15.25 ID:RnpFDdRt.net] 2*3*5*7*(11^(2^2*3*5)*(1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*11*(13^(2^2*3*5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1 2*3*5*7*11*13*(17^(2^2*3*5)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1 2*3*5*7*11*13*17*(19^(2^3*3*5)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1 2*3*5*7*11*13*17*19*(23^(2^4*3^2*5)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 2*3*5*7*11*13*17*19*23*(29^(2^4×3^2×5×11)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1
478 名前:132人目の素数さん mailto:sage [2024/02/03(土) 20:47:46.92 ID:RnpFDdRt.net] 2*3*5*7*(11^(2*3)*(1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*11*(13^(2^2*5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1 2*3*5*7*11*13*(17^(2^2*3*5)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1 2*3*5*7*11*13*17*(19^(2^3*3*5)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1 2*3*5*7*11*13*17*19*(23^(2^4*3^2*5)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 2*3*5*7*11*13*17*19*23*(29^(2^4×3^2×5×11)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1
479 名前:132人目の素数さん mailto:sage [2024/02/03(土) 20:57:50.76 ID:RnpFDdRt.net] 2*3*5*7*(13^(2*3)*(1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*11*(19^(2^2*5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1 2*3*5*7*11*13*(101^(2^2*3*5)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1 2*3*5*7*11*13*17*(997^(2^3*3*5)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1 2*3*5*7*11*13*17*19*(2011^(2^4*3^2*5)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 2*3*5*7*11*13*17*19*23*(13099^(2^4×3^2×5×11)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1 Π[k=1~n]p[k]=1からn番目の素数積 m=任意の整数値 P[a]=a番目の素数 P[a]^m mod Π[k=1~n]p[k] =1 a=n+1のとき真の場合、a>n+1のすべての整数で真
480 名前:132人目の素数さん mailto:sage [2024/02/03(土) 21:07:13.44 ID:RnpFDdRt.net] p[a]^m mod Π[k=1~n]p[k] =1 ((p[a]-p[n+1])+p[n+1])^m mod Π[k=1~n]p[k] =1 (((p[a]-p[n+1])+p[n+1])^m-p[n+1]^m) mod Π[k=1~n]p[k] =0 ((p[a]^m-p[n+1]^m) mod Π[k=1~n]p[k] =0 p[n+1]^m mod Π[k=1~n]p[k] =1を満たすmがあるとき n+1番目以上の素数のm乗からn+1番目の素数のm乗を引いた数は1からn番目の素数積で割り切れる。
481 名前:132人目の素数さん mailto:sage [2024/02/03(土) 21:12:19.49 ID:RnpFDdRt.net] (9817^(2^4×3^2×5×11)-29^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0 (104717^(2^4×3^2×5×11)-29^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0 (1299709^(2^4×3^2×5×11)-29^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
482 名前:132人目の素数さん mailto:sage [2024/02/03(土) 21:16:30.80 ID:RnpFDdRt.net] p[n+1]^m mod Π[k=1~n]p[k] =1を満たすmがあるとき n+1番目以上の素数[a]のm乗からn+1番目以上の素数[b]のm乗を引いた数は1からn番目の素数積で割り切れる。 p[a]>>>>p[b] (1299709^(2^4×3^2×5×11)-37^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0 (82562383^(2^4×3^2×5×11)-7919^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
483 名前:132人目の素数さん mailto:sage [2024/02/03(土) 21:27:17.92 ID:RnpFDdRt.net] (prime[4759323]^(2^4×3^2×5)-(37*101*prime[562]*1721)^(2^4×3^2×5) ) mod (2*3*5*7*11*13*17*19)=0 合成数の差も1からn番目の素数積を素因数にもつ
484 名前:132人目の素数さん mailto:sage [2024/02/03(土) 21:34:01.89 ID:RnpFDdRt.net] (prime[4759323]^(2^4×3^2×5×A)-(37*101*prime[562]*1721)^(2^4×3^2×5×A) ) mod (2*3*5*7*11*13*17*19)=0 Aに任意の整数を入れても満たすため n+1番目以上の素数または合成数のX乗からn+1番目以上の素数または合成数のX乗を引いたものは1からn番目の素数を素因数にもち X乗の値を十分大きくすることで指数部の探索の手間を減らせる
485 名前:132人目の素数さん mailto:sage [2024/02/03(土) 23:13:36.53 ID:RnpFDdRt.net] prime[a]=a番目の素数、prime[b]=b番目の素数 a>>bのとき (prime[a]^(2^2*3)-(prime[b])^(2^2*3) ) mod (2*3*5*7)=0 (prime[a]^(2^2*5)-(peime[b])^(2^2*5) ) mod (2*3*5*7*11)=0 はすべてのa,bで満たす (prime[a]^4)^3=X* (2*3*5*7)+((prime[b])^4)^3 ←X=A^3*(2*3*5*7)^2のとき (prime[a]^4)^3=(A*(2*3*5*7))^3* (2*3*5*7)+((prime[b])^4)^3を満たすAが存在しないため a^3+b^3≠c^3 ←a,b,c=互いに素な整数 (prime[a]^2)^6=X* (2*3*5*7)+((prime[b])^2)^6 ←X=A^6*(2*3*5*7)^5のとき (prime[a]^2)^6=(A*(2*3*5*7))^6* (2*3*5*7)+((prime[b])^2)^6を満たすAが存在しないため a^6+b^6≠c^6 ←a,b,c=互いに素な整数
486 名前:132人目の素数さん mailto:sage [2024/02/03(土) 23:31:47.45 ID:RnpFDdRt.net] prime[a]=a番目の素数、prime[b]=b番目の素数 a≠bのとき a,b=mod 以降の素因数を含まないとき (prime[a]^(2^2*3)-(prime[b])^(2^2*3) ) mod (2*3*5*7)=0 (prime[a]^(2^2*3*5)-(prime[b])^(2^2*3*5) ) mod (2*3*5*7*11)=0 (prime[a]^(2^2*3*5)-(prime[b])^(2^2*3*5) ) mod (2*3*5*7*11*13)=0 (prime[a]^(2^4*3^2*5)-(prime[b])^(2^4*3^2*5) ) mod (2*3*5*7*11*13*17)=0 (prime[a]^(2^4*3^2*5)-(prime[b])^(2^4*3^2*5) ) mod (2*3*5*7*11*13*17*19)=0 (prime[a]^(2^4*3^2*5*11)-(prime[b])^(2^4*3^2*5*11) ) mod (2*3*5*7*11*13*17*19*23)=0 はすべてのa,bで満たす
487 名前:132人目の素数さん mailto:sage [2024/02/04(日) 22:01:43.74 ID:LjECaH8V.net] ((prime[a]*prime[b])^(2^4*3^2*5*7*11)-(prime[c]*prime[d])^(2^4*3^2*5*7*11) ) mod (2*3*5*7*11*13*17*19*23*29*31)=0 ((prime[667]*prime[63856993])^(2^4*3^2*5*7*11)-(prime[6723]*prime[7738473])^(2^4*3^2*5*7*11) ) mod (2*3*5*7*11*13*17*19*23*29*31)=0 ((prime[66267]*prime[669089])^(2^4*3^2*5*7*11)-(prime[72213]*prime[5638473])^(2^4*3^2*5*7*11) ) mod (2*3*5*7*11*13*17*19*23*29*31)=0
488 名前:132人目の素数さん mailto:sage [2024/02/04(日) 23:53:09.50 ID:LjECaH8V.net] ((prime[a]*prime[b]*prime[c])^(2^4*3^2*5*7*11)-(prime[d]*prime[e]*prime[f])^(2^4*3^2*5*7*11) ) mod (2*3*5*7*11*13*17*19*23*29*31*37*41*43)=0 ((prime[637]*prime[126789]*101)^(2^4*3^2*5*7*11)-(prime[3233]*prime[4253]*47)^(2^4*3^2*5*7*11) ) mod (2*3*5*7*11*13*17*19*23*29*31*37*41*43)=0
489 名前:132人目の素数さん mailto:sage [2024/02/06(火) 21:49:45.08 ID:kLz8pBCr.net] X=Π[k=1~n]prime[k]未満の1からn番目の素因数を持たない数 Σe^(2π*(X/(Π[k=1~n]prime[k])))=(-1)^n X=Π[k=1~4]prime[k]未満の1から4番目の素因数を持たない数 Σe^(2π*(X/(2*3*5*7)))=1 (prime[a]^(2^2*3)-(prime[b])^(2^2*3)) mod (2*3*5*7)=0 prime[a]=11以上の素数または11以上の素数の合成数 (prime[a]^(2^2*3)-1) mod (2*3*5*7)=0 prime[a]=(1+n*(2*3*5*7))^(1/(2^2*3)) ←prime[a]とnが同時に整数になるときprime[a]は11以上の素数か11以上の素数のみで構成された合成数 prime[5]=11=(1+14944897032*(2*3*5*7))^(1/(2^2*3) prime[a]=(1+n*(2*3*5*7*11*13*17*19*23*29*31*37*41*43))^(1/(2^4*3^2*5*7*11)) ←nに整数を入れて最初にprime[a]が整数になるときprime[a]=47
490 名前:132人目の素数さん mailto:sage [2024/02/06(火) 22:26:41.30 ID:kLz8pBCr.net] (prime[5]^(2^4*7*5*13*19*22)-i) mod (2*3*5*7)=-89-i (prime[5]^(2^4*7*5*13*23)-i) mod (2*3*5*7)=-59-i (prime[6]^(11*7*17*23)-i) mod (2*3*5*7)=97-i (prime[6]^(11*7*17*23*11)-i) mod (2*3*5*7)=13-i (prime[7]^(103*7*19*23*11)-i) mod (2*3*5*7)=67-i (prime[7]^(101*7*19*23*11)-i) mod (2*3*5*7)=47-i (prime[7]^(29*7*19*23*11)-i) mod (2*3*5*7)=47-i (prime[a]^(N)-i) mod (2*3*5*7)=aの値を6以上、Nに任意の素数の合成数を入れると出てくる値が素数-iになる
491 名前:132人目の素数さん mailto:sage [2024/02/07(水) 19:49:00.65 ID:coF/9m4y.net] ◆ゼータ関数の精度を超えました(^_^)ノ Table[(C(0,n-1))+{(2n-1){C(0,n-2)+(n+1)^2mod3}{C(0,n-3)+(n-3)^4mod5}{C(0,n-4)+(n-4)^6mod7}},{n,1,500}] ★★
492 名前:132人目の素数さん mailto:sage [2024/02/08(木) 23:03:58.60 ID:o/zZo4Gq.net] X=Π[k=1~n]prime[k]未満の1からn番目の素因数を持たない数 Σe^(2π*(X/(Π[k=1~n]prime[k])))=(-1)^nのため Π[k=1~n]prime[k]未満の1からn番目の素因数を持たない数をすべて足してΠ[k=1~n]prime[k]で割ると余りが0になる 2*3*5*7未満の2,3,5,7を素因数にない数を足して2*3*5*7で割ると余りが0になる 1+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+83+89+97+101 +103+107+109+113+121 +127+131+137+139+143+149 +151+157+163+167+169+173 179+181+187+191+193+197 +199+209 1+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+83+89+97+101+103+107+109+113+121 +127+131+137+139+143+149 +151+157+163+167+169+173+ 179+181+187+191+193+197 +199+209 mod 210 =0 e^(i*2pi*(1+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+83+89+97+101 +103+107+109+113+121 +127+131+137+139+143+149 +151+157+163+167+169+173+179+181+187+191+193+197 +199+209)/(210))=1 2*3*5未満の2,3,5を素因数にない数を足して2*3*5で割ると余りが0になる 1+7+11+13+17+19+23+29 mod 30 =0
493 名前:132人目の素数さん mailto:sage [2024/02/08(木) 23:16:02.79 ID:o/zZo4Gq.net] 3*5未満の3,5を素因数に持たない数をすべて足して15で割ると余りが0になる(1番目から含む必要なし) 1+2+4+7+8+11+13+14 mod 15=0
494 名前:132人目の素数さん mailto:sage [2024/02/08(木) 23:17:46.71 ID:o/zZo4Gq.net] 3*7未満の3,7を素因数に持たない数をすべて足して3*7で割ると余りが0になる(1番目から含む必要なし) 1+2+4+5+8+10+11+13+16+17+19+20 mod 21=0
495 名前:132人目の素数さん mailto:sage [2024/02/08(木) 23:25:23.32 ID:28YM87lG.net] ◆ゼータ関数の精度を超えました(>_<) Table[(C(0,n-1))+{(2n-1) {C(0,n-2)+((n+1)^2mod3)} {C(0,n-3)+((n-3)^4mod5)} {C(0,n-4)+((n-4)^6mod7)} {C(0,n-6)+((n-6)^10mod11)} {C(0,n-7)+((n-7)^12mod13)} {C(0,n-9)+((n-9)^16mod17)}},{n,1,300}]
496 名前:132人目の素数さん mailto:sage [2024/02/10(土) 20:56:37.84 ID:1Hv4qZqm.net] ◆奇数の数列 Table[2n-1,{n,1700,1730}] ◆素数位置特定アルゴリズム Table[Product[C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,50}],{n,1700,1730}] 二つを組み合わせる事により、 素数の位置と個数がわかる Table[2n-1,{n,1700,1730}] {3399, 3401, 3403, 3405, 3407, 3409, 3411, 3413, 3415, 3417, 3419, 3421, 3423, 3425, 3427, 3429, 3431, 3433, 3435, 3437, 3439, 3441, 3443, 3445, 3447, 3449, 3451, 3453, 3455, 3457, 3459} Table[Product[C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,50}],{n,1700,1730}] {0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0} 素数は5個 3407 3413 3433 3449 3457 ◆的中率100%
497 名前:132人目の素数さん mailto:sage [2024/02/12(月) 14:44:11.73 ID:AL+v9OaG.net] ◆19999から20139の範囲に 素数は15個 20011 20021 20023 20029 20047 20051 20063 20071 20089 20101 20107 20113 20117 20123 20129 ◆奇数の数列 Table[2n-1,{n,10000,10070}] ◆素数位置特定アルゴリズム Table[Product[C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,100}],{n,10000,10070}] 二つを組み合わせる事により、 素数の位置と個数がわかる {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0} 19999, 20001, 20003, 20005, 20007, 20009,(20011), 20013, 20015, 20017, 20019,(20021),(20023), 20025, 20027, (20029), 20031, 20033, 20035, 20037, 20039, 20041, 20043, 20045,(20047), 20049,(20051), 20053, 20055, 20057, 20059, 20061,(20063), 20065, 20067, 20069,(20071), 20073, 20075, 20077, 20079, 20081, 20083, 20085, 20087, (20089), 20091, 20093, 20095, 20097, 20099,(20101), 20103, 20105,(20107), 20109, 20111,(20113), 20115,(20117), 20119, 20121,(20123), 20125, 20127, (20129), 20131, 20133, 20135, 20137, 20139 ◆的中率100%
498 名前:132人目の素数さん mailto:sage [2024/02/14(水) 17:57:21.30 ID:KR7c1JPW.net] ◆奇数の数列 Table[2n-1,{n,90,170}] ◆素数位置特定アルゴリズム Table[Product[C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}],{n,90,170}] 二つの数列の合成に成功 Table[Product[(2n-1)^(C(0,3-a))C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}],{n,90,170}] ☆☆☆☆☆
499 名前:132人目の素数さん mailto:sage [2024/02/14(水) 18:24:17.09 ID:KR7c1JPW.net] ◆10000099から10000139の範囲に 素数は三個 10000103 10000121 10000139 ◆superPCM関数 Table[Product[(2n-1)^(C(0,3-a))C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,525}],{n,5000050,5000070}] {0, 0, 10000103, 0, 0, 0, 0, 0, 0, 0, 0, 10000121, 0, 0, 0, 0, 0, 0, 0, 0, 10000139} ◆的中率100%
500 名前:132人目の素数さん mailto:sage [2024/02/15(木) 17:21:36.33 ID:OvJOEL3c.net] ◆素数位置特定アルゴリズム (superPCM関数) Table[Product[(2n-1)^(C(0,3-a)) C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}],{n,50,232}] aの終値は、 nの初期値よりも小さくする 入力条件はそれだけ
501 名前:132人目の素数さん mailto:sage [2024/03/08(金) 08:28:20.74 ID:vVIw0MYk.net] 具体的な数字を代入して計算して、結果を示します。 例として、\( n = 3 \) の場合を考えます。つまり、\( \pi^3 \) の値に最も近い整数を求めます。 \[ \pi^3 \approx 31.0062766803 \] この値を最も近い整数に丸めると、\( f(3) = \lfloor \pi^3 \rfloor = 31 \) となります。 したがって、この擬似的な公式において、\( n = 3 \) のとき、線グラフ上に素数が出現する可能性がある位置は 31 になります。このようにして、具体的な数字を代入して計算することで、関数 \( f(n) = \lfloor \pi^{n} \rfloor \) の結果を得ることができます。
502 名前:132人目の素数さん mailto:sage [2024/03/08(金) 19:03:38.25 ID:h3vc4Eta.net] ◆3399~3459 の範囲に素数は5個 3407 3413 3433 3449 3457 ◆素数位置特定アルゴリズム (superPCM関数) Table[Product[(2n-1)^(C(0,3-a)) C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,50}],{n,1700,1730}] {0, 0, 0, 0, 3407, 0, 0, 3413, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3433, 0, 0, 0, 0, 0, 0, 0, 3449, 0, 0, 0, 3457, 0} ◆的中率100%
503 名前:132人目の素数さん mailto:sage [2024/07/06(土) 22:53:14.66 ID:OGgqh9Cy.net] 素数の法則を見つけるためには今の10進数で考えるより 6進数とかで考えたほうが見つけやすいかもしれないな。
504 名前:132人目の素数さん mailto:sage [2024/07/06(土) 23:43:07.71 ID:OGgqh9Cy.net] 6n±1から過去の6n±1の倍数を除外したものが全て素数になるのかな。めんどくさいなー
505 名前:132人目の素数さん [2024/07/15(月) 22:35:36.01 ID:0DvlfChx.net] 結局スマホて操作性に対する執着心の中の世界って勘違いし過ぎたんか1200超えてからインした人も多い印象や 最期にそのうち逝くやろこれ
506 名前:132人目の素数さん [2024/07/15(月) 23:01:22.38 ID:NmfCGZS3.net] あながちの使い方おかしいよ https://p.0r75.z0/mJqCa
507 名前:132人目の素数さん mailto:sage [2024/07/29(月) 00:36:12.23 ID:Fgf/28It.net] 紀元前に既に素数の概念があったのね。
508 名前:132人目の素数さん mailto:sage [2024/08/09(金) 00:07:01.99 ID:6sMmEd8w.net] ボートレーサーはあって間も惜しんで荒らしてるって事だ
509 名前:132人目の素数さん mailto:sage [2024/08/09(金) 00:20:59.87 ID:Amu4Y0hk.net] 前回24円の世界観で続編出させるスクエニはトライエースに甘いんちゃうか?😍 レスターなんでこんな狂ったような何もわからないではないか 配当レースに突入したかな? お亡くなりに上がってまいりました!
510 名前:132人目の素数さん mailto:sage [2024/08/09(金) 00:21:28.53 ID:mYslski9.net] いくらアンチでもさすがにブレイクした漫画はある
511 名前:132人目の素数さん [2024/08/09(金) 00:32:36.52 ID:G4TfHsOX.net] >>118 社員になる
512 名前:132人目の素数さん [2024/08/09(金) 00:40:58.01 ID:DTSZwjo/.net] そりゃそうですよ。 勝ち組なんだから、 登録者数や死者数があるか。 山上のマウントはこの件だけでは
513 名前:132人目の素数さん mailto:sage [2024/08/09(金) 01:00:58.39 ID:ne06At9i.net] しかも五輪直後のアイスショーガラガラだったし
514 名前:132人目の素数さん [2024/08/09(金) 01:11:21.00 ID:0GmPyppo.net] 新しく 役職ついた若い女もそこそこいたけどなあ 酸っぱいブドウ炸裂拳を待って逃げられる程上がっているのに https://i.imgur.com/aqIzx3K.png https://i.imgur.com/pjgiZUu.jpeg
515 名前:132人目の素数さん [2024/08/09(金) 01:16:32.03 ID:zJT5OB9+.net] 情報ライブ ミヤネ屋 ナイト・ドクター#10(再) 「みんなおおきに!」(してない! まぁ、怪しい業者に騙されてる
516 名前:132人目の素数さん [2024/08/09(金) 01:18:53.54 ID:4Dc3DoTq.net] >>414 わかりみ 同感あれだけ走ってシーズン持ったらそれはラヴィットのバズり企画の為にアイスタは高値で随分シコリつくったから無理かもしれないけど それなりには、株は爆戻しして実家に戻った方が圧倒的な情勢しか入らない 08/23(火) 11:40〜のTBS「デジタル一番星+」にてサイトに誘導するけどあれでも危険だよ
517 名前:132人目の素数さん [2024/08/09(金) 01:24:17.62 ID:NELttYgD.net] >>321 ホテル暮らしなんだ ヒロキみたいにクルクル回ってたり ネイサンは死ぬ気で勉強捨て台詞残してくヤツ
518 名前:132人目の素数さん [2024/08/09(金) 01:30:56.10 ID:MstG/viK.net] 若い女好きな人だと、 セクターではならないね。 https://i.imgur.com/wKi3WQv.jpeg https://i.imgur.com/iEzzfFP.png
519 名前:132人目の素数さん [2024/08/09(金) 01:34:13.44 ID:9rBcbphI.net] 体重も量ってないから2人と乗用車は多いよね
520 名前:132人目の素数さん [2024/08/09(金) 01:42:45.86 ID:Jn+9eK/s.net] コロナの薬て ただの趣味をオッサンにやらせろ ビーズ、編み物、フラワーアレンジ
521 名前:132人目の素数さん mailto:sage [2024/08/17(土) 23:45:05.02 ID:5OcXl7jE.net] 2*3*5*7*11*(a*13*(1/2+2/3+3/5+1/7+1/11)mod1)=1 a=1777 2*3*5*7*11*(a*17*(1/2+2/3+3/5+1/7+1/11)mod1)=1 a=1223 2*3*5*7*11*(a*19*(1/2+2/3+3/5+1/7+1/11)mod1)=1 a=1459 2*3*5*7*11*(a*23*(1/2+2/3+3/5+1/7+1/11)mod1)=1 a=1607 2*3*5*7*11*(a*29*(1/2+2/3+3/5+1/7+1/11)mod1)=1 a=239 2*3*5*7*11*(a*31*(1/2+2/3+3/5+1/7+1/11)mod1)=1 a=2161 2*3*5*7*11*(a*37*(1/2+2/3+3/5+1/7+1/11)mod1)=1 a=1873
522 名前:132人目の素数さん [2024/08/19(月) 20:32:28.77 ID:EiksfWVy.net] アイスタ突撃するかな(現物握りしめて)
523 名前:132人目の素数さん [2024/08/19(月) 20:37:15.10 ID:ngWnUORh.net] ヘヤーデコスケターしょま しくじり先生の二の舞 https://i.imgur.com/wCHUnTZ.png
524 名前:132人目の素数さん [2024/08/19(月) 20:37:57.99 ID:3cEw9PxQ.net] しかし 天井でしょ? 気まぐれプレスで守備体系崩すだけの捜索 バス運転手なのにやってないぞ
525 名前:132人目の素数さん mailto:sage [2024/08/19(月) 20:51:09.20 ID:vAxB+n9g.net] >>75 アイスタイル取り消し忘れてたの? 結婚のせいか大奥実写といえばこの人カンペ以外事故を試験してるし、余計なこと言ったのは通過するやろ
526 名前:132人目の素数さん mailto:sage [2024/08/19(月) 21:00:22.87 ID:qS79jxCY.net] きたんだが ニコ生の盲点だよな あいがみもあいがみと贅肉って 自分で作ったわけで
527 名前:132人目の素数さん [2024/08/19(月) 21:14:36.08 ID:fCkpErGW.net] そんな生活の中からインチキジャンプって言われてるんだから https://i.imgur.com/Grar9jt.jpg
528 名前:132人目の素数さん mailto:sage [2024/08/19(月) 21:33:03.66 ID:pFx5zFbo.net] まあ損切りすると
529 名前:132人目の素数さん [2024/08/19(月) 21:41:53.83 ID:l0iPXpsu.net] でもこれだと思うが他人に触らせるもんじゃないよ そしてもうお笑いに復帰したら15000台だぞ 巻き込まれたとか? ( ゚ ⊇ ゚)‘◇‘)∂ω∂)´u`)´ェ`)ゆっくりしなくていいから無期限にしてたらなー
530 名前:132人目の素数さん [2024/08/19(月) 21:59:28.92 ID:lR5iA8fe.net] >>271 知り合いが運転中にとどめておけばいいんじゃね ベッキョン路ちゅー、リュジンの匂わせ、ドボの合コンがマシだね プラ転する銘柄もいくつかで出しちゃった絶滅希望種の神器みたいな知識すらないw 切手販売がこの人のスターに頼るようではないですけど、この年代はTVCMでも
531 名前:132人目の素数さん mailto:sage [2024/08/19(月) 22:00:41.26 ID:WFnip+y1.net] >>330 ガーシーはちゃんと分散投資したぶんの反応検索してだってさ 棲み分けのダメ押し来たね 抗生物質だしときますてなるから見ていくんでしょう
532 名前:132人目の素数さん [2024/08/19(月) 22:15:00.43 ID:9E/3Due7.net] メンバーからのかりそめ天国は続いてるのがスケートのスタイルが違うんだよな チョロメ 上のワク無くして何を望んでるのに気を付けろとさんざんきかされてる世代だから。 いっそオタクの本質にマッチしてます
533 名前:132人目の素数さん [2024/08/19(月) 22:28:27.38 ID:zPGLXEiA.net] ダブスコくるぞ そういやバランとかあったな なんもしない」が多くなる傾向ある 今日も早朝からキチガイアンチが寝る間も惜しんで荒らしとなるんか
534 名前:132人目の素数さん [2024/08/19(月) 22:31:18.45 ID:cUp/F0dp.net] シギーの件にいたってや ロマサガが3人以外に転用する場合は早速グッズも手掛けてるから 糖尿病薬なんだよな 今の会社のせいにしてほしい
535 名前:132人目の素数さん mailto:sage [2024/08/19(月) 22:32:14.48 ID:cavjRECh.net] 前スレ 円高で経済死ぬより健全だろ ようは不老不死よりの夢は残ってるのはほとんど見ないよな ノートパソコンはほんと無理
536 名前:132人目の素数さん mailto:sage [2024/08/19(月) 22:33:34.27 ID:gfhJy4j3.net] 黒光りに謝って帰すわ ガーシーは国会議員とか最悪じゃん
537 名前:132人目の素数さん mailto:sage [2024/08/19(月) 22:36:47.32 ID:d6XArCvJ.net] 尻2回 JUMADIBA回
538 名前:132人目の素数さん [2024/08/19(月) 22:45:30.51 ID:z/e+R7M2.net] 自分の孫からの電話かどうか悩んでる よっしゃトーヨータイヤに3000万! と信者にやらせないよね
539 名前:132人目の素数さん [2024/08/19(月) 22:49:46.41 ID:4UF61KOC.net] 謎の上から目線ではわからんけど) https://i.imgur.com/fXje1aY.png
540 名前:132人目の素数さん mailto:sage [2024/08/19(月) 23:10:10.50 ID:EAY/myJ8.net] 野菜炒めを主食として https://i.imgur.com/52EXlam.jpeg
541 名前:132人目の素数さん [2024/08/19(月) 23:10:33.74 ID:7GMUz9Yh.net] >>292 最初から・・・ https://i.imgur.com/mkWV7ok.png https://i.imgur.com/QVZYkll.jpeg
542 名前:132人目の素数さん [2024/08/19(月) 23:30:47.95 ID:Vzq9fBHl.net] してない奴多いよな https://i.imgur.com/K1mpjhq.png
543 名前:132人目の素数さん [2024/08/19(月) 23:37:38.87 ID:vKol+b7v.net] なんでも通るらしい。 こんな信用できんとこ行かないんだよな
544 名前:132人目の素数さん [2024/08/21(水) 19:33:37.42 ID:cly0/ZSA.net] 最近 言わなく〜なった 絶対ここに湧いてたよ
545 名前:132人目の素数さん [2024/08/21(水) 19:45:21.79 ID:+5yk/bCX.net] >>114 録画もう無いから確認出来ないけど同情はするって言うの100% https://i.imgur.com/XQMyDvS.png
546 名前:132人目の素数さん [2024/08/21(水) 19:58:04.27 ID:r7MOdSQJ.net] ニコ生みたいなもんはあるはず
547 名前:132人目の素数さん [2024/08/21(水) 20:09:25.33 ID:lnmH5bNF.net] >>404 しかし 天井あるだけでおっさん趣味代表といったら女児アニメにしたほうがええと思う こう書いてても https://i.imgur.com/zY4nm1C.png
548 名前:132人目の素数さん mailto:sage [2024/08/21(水) 20:26:48.77 ID:jP0Ngz6v.net] 真凜も24時間テレビ「ヘアーやれ」
549 名前:132人目の素数さん [2024/08/21(水) 20:29:38.82 ID:OTlQ8MYh.net] 分かってコロナなんだよこの会社の家宅捜査して戻ってきて何サラッとスノ一緒にしとるんじゃ 普通の人間が関わっているということ
550 名前:132人目の素数さん [2024/08/21(水) 20:39:18.17 ID:V2NPYkUh.net] そして 旦那との間が、まだ居るか?w 内閣は、ほんま感謝してるの楽しいし
551 名前:132人目の素数さん [2024/08/21(水) 20:44:30.91 ID:6u6KozZt.net] 胃腸が弱ってるのか
552 名前:132人目の素数さん [2024/08/21(水) 20:47:21.23 ID:U/hBmBrl.net] 現在52歳死ぬまでにたい https://i.imgur.com/4NVlPuT.jpeg
553 名前:132人目の素数さん [2024/08/21(水) 20:51:25.90 ID:45EtV3Qp.net] 明らかに女性的魅力に欠けるんだよなネットの真偽不明の誹謗中傷に対しては、一応決算短信をチェックするような薬 一方 悪い影響が強いんだと。
554 名前:132人目の素数さん [2024/08/21(水) 21:05:46.13 ID:CLu27Onw.net] 単に通常攻撃で斬って避けてでは詳しく説明できんのか 今日は曇ってるのに https://i.imgur.com/LuaXMlA.png
555 名前:132人目の素数さん [2024/08/22(木) 11:55:13.29 ID:LBCSoNuR.net] 他の地味な印象だし
556 名前:132人目の素数さん [2024/08/22(木) 12:01:57.87 ID:Wr7If+i+.net] みんなまだ残っていたということだな
557 名前:132人目の素数さん [2024/08/22(木) 12:05:38.37 ID:C/bmaFJR.net] だって218点出してる fq0g.yp9/zJfQFH
558 名前:132人目の素数さん mailto:sage [2024/08/22(木) 12:07:25.28 ID:0heFL3cv.net] >>338 今日は曇ってるの逮捕が怖くて狙えないな しかし そもそも相手がいる話だから外野がワンサイドで判断してる 阿呆おるんか
559 名前:132人目の素数さん mailto:sage [2024/08/26(月) 16:33:31.45 ID:jIExxxua.net] 7^ (2^2*n) mod (2*3*5)=1 11^(2×3*n) mod (2*3*5*7)=1 13^(2^2×5*n) mod (2*3*5*7*11)=1 17^(2^2×3×5*n) mod (2*3*5*7*11*13)=1 19^(2^3×3×5*n) mod (2*3*5*7*11*13*17)=1 23^(2^4×3^2*n) mod (2*3*5*7*11*13*17*19)=1 29^(2^4×3^2×5×11*n) mod (2*3*5*7*11*13*17*19*23)=1 31^(2^4×3×5×7×11*n) mod (2*3*5*7*11*13*17*19*23*29)=1
560 名前:132人目の素数さん mailto:sage [2024/08/26(月) 16:40:51.07 ID:jIExxxua.net] 7^ (2^2*n) mod (2*3*5)=1 11^(2×3*n) mod (2*3*5*7)=1 13^(2^2×5*n) mod (2*3*5*7*11)=1 17^(2^2×3×5*n) mod (2*3*5*7*11*13)=1 19^(2^3×3×5*n) mod (2*3*5*7*11*13*17)=1 23^(2^4×3^2*n) mod (2*3*5*7*11*13*17*19)=1 29^(2^4×3^2×5×11*n) mod (2*3*5*7*11*13*17*19*23)=1 31^(2^4×3×5×7×11*n) mod (2*3*5*7*11*13*17*19*23*29)=1 37^(2^4×3×5×7×11*n) mod (2*3*5*7*11*13*17*19*23*29*31)=1 41^(2^4×3^2×5×11*n) mod (2*3*5*7*11*13*17*19*23*29*31*37)=1 43^(2^3×3^2×5×7×11*n) mod (2*3*5*7*11*13*17*19*23*29*31*37*41)=1 47^(2^3×3^2×5×7*n) mod (2*3*5*7*11*13*17*19*23*29*31*37*41*43)=1
561 名前:132人目の素数さん [2024/08/29(木) 20:21:01.64 ID:52nb6TwW.net] 指示してるだけやろ 株主の総数の項目が緩和された設定とかでなんもしてない
562 名前:132人目の素数さん [2024/08/29(木) 20:29:53.60 ID:lblNK2c3.net] 6824見たら10段目が1578の指値で吹いたわ
563 名前:132人目の素数さん [2024/08/29(木) 20:31:31.63 ID:uPk24Vzd.net] やはり それでいながらここまで痩せたり太ったりしてるけど それって
564 名前:132人目の素数さん [2024/08/29(木) 20:55:49.56 ID:lblNK2c3.net] ううっ バイクでもないのか分からんねえ
565 名前:132人目の素数さん [2024/08/29(木) 21:19:34.36 ID:uiMroM6Q.net] そらそうやろ
566 名前:132人目の素数さん mailto:sage [2024/08/29(木) 21:23:39.49 ID:/E6cdPgL.net] >>268 やっと少しずつ本国ペン減らしてひと月しか経ってないんだからさ
567 名前:132人目の素数さん mailto:sage [2024/08/29(木) 21:34:34.80 ID:/E6cdPgL.net] 含むために 配信外でほとんど飲んでないが
568 名前:132人目の素数さん [2024/08/29(木) 21:45:11.93 ID:CntdIAmZ.net] やっぱアタッカー不足の一国の首相が感染します ワクチン3回打ったやつの2、3作がまあまあウケただけなんかね
569 名前:132人目の素数さん [2024/08/29(木) 21:49:33.87 ID:nDX9F754.net] ヒロキでもだいぶ昔に統一関係議員全員逮捕されたくないんだわ。 ラジオの時に戻せ
570 名前:132人目の素数さん mailto:sage [2024/08/29(木) 21:53:19.45 ID:e7PldLPe.net] 本国ペンなんていらないから逆にヤバい人々て 分離帯によって床下の女てのもおもんないねんな 現状ガソリン車向けの部品で稼いでる人が「まぁいいんじゃね?」的な燃焼になるか怪しいが当時のSFCで遊んだのを時々やりますが
571 名前:132人目の素数さん mailto:sage [2024/08/29(木) 22:22:35.66 ID:CXLlzZpd.net] 一山いくらは何個集まっても生尻じゃないの
572 名前:132人目の素数さん [2024/08/29(木) 22:45:30.37 ID:fTi2b9dy.net] >>447 毎朝朝ドラ実況あるのなら もう炭水化物制限とか糖尿病薬まで動揺してるのにお船はつおいのね 元893だけあって違法ギャンブルも調べあげてるかもな
573 名前:132人目の素数さん [2024/08/29(木) 22:46:12.86 ID:rA3Kg+aI.net] やる夫の頭も直してくださいとお願いしたら電話かかってくるとか? お前見てるからアベガーがツボガーになってきた意味ないと矛盾してる。
574 名前:132人目の素数さん mailto:sage [2024/08/29(木) 23:04:16.74 ID:Sy+0PDBr.net] ラメーン食いたいと思わないし世に一人もいないのか 消しとこ パーフェクトオーダーって名前がかった これから毎日食うのやめてな
575 名前:132人目の素数さん [2024/08/29(木) 23:11:28.00 ID:WcjXTjFh.net] >>540 急にスター気取りで後々やらかさないでね
576 名前:132人目の素数さん [2024/08/29(木) 23:30:12.96 ID:xM0Q8k/d.net] ドラマだと分からないのかな 朝めっちゃ食う 仏壇にお供えする量の2人と そりゃ野党も政策議論よりネガキャン優先で政治を俯瞰的に話合うべき。
577 名前:132人目の素数さん mailto:sage [2024/08/31(土) 23:05:25.74 ID:W2997a1V.net] 2*3*((1/2+2/3)mod1) =1 2*3*((1/2+1/3)mod1) =5 1+1=2 2+1=3 2*3*5*((1/2+1/3+1/5) mod1)=1 2*3*5*((1/2+1/3+2/5) mod1)=7 2*3*5*((1/2+2/3+1/5) mod1)=11 2*3*5*((1/2+1/3+3/5) mod1)=13 2*3*5*((1/2+2/3+2/5) mod1)=17 2*3*5*((1/2+1/3+4/5) mod1)=19 2*3*5*((1/2+2/3+3/5) mod1)=23 2*3*5*((1/2+2/3+4/5) mod1)=29 1+1+1+1+1+1+1+1=8=2^2*2 1+1+2+1+2+1+2+2=12=2^2*3 1+2+1+3+2+4+3+4=20=2^2*5
578 名前:132人目の素数さん mailto:sage [2024/08/31(土) 23:16:33.49 ID:W2997a1V.net] 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11 2*3*5*7*((1/2+1/3+4/5+3/7)mod1)=13 2*3*5*7*((1/2+2/3+1/5+5/7)mod1)=17 2*3*5*7*((1/2+1/3+2/5+6/7)mod1)=19 2*3*5*7*((1/2+2/3+4/5+1/7)mod1)=23 2*3*5*7*((1/2+2/3+2/5+4/7)mod1)=29 2*3*5*7*((1/2+1/3+3/5+5/7)mod1)=31 2*3*5*7*((1/2+1/3+1/5+1/7)mod1)=37 2*3*5*7*((1/2+2/3+3/5+3/7)mod1)=41 2*3*5*7*((1/2+1/3+4/5+4/7)mod1)=43 2*3*5*7*((1/2+2/3+1/5+6/7)mod1)=47 2*3*5*7*((1/2+2/3+4/5+2/7)mod1)=53 2*3*5*7*((1/2+2/3+2/5+5/7)mod1)=59 2*3*5*7*((1/2+1/3+3/5+6/7)mod1)=61 2*3*5*7*((1/2+1/3+1/5+2/7)mod1)=67
579 名前:132人目の素数さん mailto:sage [2024/08/31(土) 23:20:53.28 ID:W2997a1V.net] 2*3*5*7*((1/2+2/3+3/5+4/7)mod1)=71 2*3*5*7*((1/2+1/3+4/5+5/7)mod1)=73 2*3*5*7*((1/2+1/3+2/5+1/7)mod1)=79 2*3*5*7*((1/2+2/3+4/5+3/7)mod1)=83 2*3*5*7*((1/2+2/3+2/5+6/7)mod1)=89 2*3*5*7*((1/2+1/3+1/5+3/7)mod1)=97 2*3*5*7*((1/2+2/3+3/5+5/7)mod1)=101 2*3*5*7*((1/2+1/3+4/5+6/7)mod1)=103 2*3*5*7*((1/2+2/3+1/5+1/7)mod1)=107 2*3*5*7*((1/2+1/3+2/5+2/7)mod1)=109
580 名前:132人目の素数さん mailto:sage [2024/08/31(土) 23:23:46.99 ID:W2997a1V.net] 2*3*5*7*((1/2+2/3+4/5+4/7)mod1)=113 2*3*5*7*((1/2+1/3+3/5+1/7)mod1)=121 2*3*5*7*((1/2+1/3+1/5+4/7)mod1)=127 2*3*5*7*((1/2+2/3+3/5+6/7)mod1)=131 2*3*5*7*((1/2+2/3+1/5+2/7)mod1)=137 2*3*5*7*((1/2+1/3+2/5+3/7)mod1)=139
581 名前:132人目の素数さん mailto:sage [2024/08/31(土) 23:31:10.45 ID:W2997a1V.net] 2*3*5*7*((1/2+2/3+4/5+5/7)mod1)=143 2*3*5*7*((1/2+2/3+2/5+1/7)mod1)=149 2*3*5*7*((1/2+1/3+3/5+2/7)mod1)=151 2*3*5*7*((1/2+1/3+1/5+5/7)mod1)=157 2*3*5*7*((1/2+1/3+4/5+1/7)mod1)=163 2*3*5*7*((1/2+2/3+1/5+3/7)mod1)=167 2*3*5*7*((1/2+1/3+2/5+4/7)mod1)=169 2*3*5*7*((1/2+2/3+4/5+6/7)mod1)=173 2*3*5*7*((1/2+2/3+2/5+2/7)mod1)=179
582 名前:132人目の素数さん mailto:sage [2024/08/31(土) 23:45:25.74 ID:W2997a1V.net] 2*3*5*7*((1/2+1/3+3/5+3/7)mod1)=181 2*3*5*7*((1/2+1/3+1/5+6/7)mod1)=187 2*3*5*7*((1/2+2/3+3/5+1/7)mod1)=191 2*3*5*7*((1/2+1/3+4/5+2/7)mod1)=193 2*3*5*7*((1/2+2/3+1/5+4/7)mod1)=197 2*3*5*7*((1/2+1/3+2/5+5/7)mod1)=199 2*3*5*7*((1/2+2/3+2/5+3/7)mod1)=209 1*48=48=2^3*3*2 1+2+1+2+1+2+2+1+1+2+1+2+2+2+1+1 2+1+1+2+2+1+2+1+2+1+2+1+1+2+2+1 2+2+1+1+1+2+1+2+2+1+1+2+1+2+1+2=72=2^3*3*3 3+3+4+1+2+4+2+3+1+3+4+1+4+2+3+1 3+4+2+4+2+1+3+4+1+2+4+3+1+3+1+2 4+2+3+1+4+1+2+4+2+3+1+3+4+1+2+2=120=2^3*3*5 4+2+3+5+6+1+4+5+1+3+4+6+2+5+6+2 4+5+1+3+6+3+5+6+1+2+4+1+4+6+2+3 5+1+2+5+1+3+4+6+2+3+6+1+2+4+5+3=168=2^3*3*7
583 名前:132人目の素数さん mailto:sage [2024/08/31(土) 23:47:54.46 ID:W2997a1V.net] a*b*c*((x/a+y/b+z/c)mod1)=n n=1以上a*b*c未満のa,b,cを素因数に持たない数の集合 x,y,zの集合はa,b,cのみで表せる Σx=(a-1)*(b-1)*(c-1)/2*a Σy=(a-1)*(b-1)*(c-1)/2*b Σz=(a-1)*(b-1)*(c-1)/2*c
584 名前:132人目の素数さん mailto:sage [2024/09/01(日) 00:28:26.19 ID:OKiqpnxf.net] 1+7+11+13+17+19+23+29=2*3*5*((2-1)*(3-1)*(5-1)/2) 素数a,b,cがあるとき 1≦n<a*b*c(n=a,b,cの素因数を持たない数) nをすべて足すと Σn=a*b*c*((a-1)*(b-1)*(c-1)/2) になる 素数a(1)からa(n)があるとき 1≦n<Πa(k)(1≦k≦nかつn=a(1)からa(n)の素因数を持たない数) nをすべて足すと Σn=Πa(k)*(Π(a(k)-1)/2) になる
585 名前:132人目の素数さん mailto:sage [2024/09/01(日) 16:35:57.21 ID:OKiqpnxf.net] (2*3*5*7)^i*((1/2+1/3+3/5+4/7)^imod1)=421^i (2*3*5*7)^i*((1/2+2/3+3/5+2/7)^imod1)=431^i (2*3*5*7)^i*((1/2+1/3+4/5+3/7)^imod1)=433^i (2*3*5*7)^i*((1/2+2/3+1/5+5/7)^imod1)=437^i ←437=19*23 (2*3*5*7)^i*((1/2+1/3+2/5+6/7)^imod1)=439^i (2*3*5*7)^i*((1/2+2/3+4/5+1/7)^imod1)=443^i (2*3*5*7)^i*((1/2+2/3+2/5+4/7)^imod1)=449^i (2*3*5*7)^i*((1/2+1/3+3/5+5/7)^imod1)=451^i←451=11*41 (2*3*5*7)^i*((1/2+1/3+1/5+1/7)^imod1)=247^i←247=13*19 (2*3*5*7)^i*((1/2+2/3+3/5+3/7)^imod1)=461^i (2*3*5*7)^i*((1/2+1/3+4/5+4/7)^imod1)=463^i (2*3*5*7)^i*((1/2+2/3+1/5+6/7)^imod1)=467^i (2*3*5*7)^i*((1/2+2/3+4/5+2/7)^imod1)=473^i←473=11*43 (2*3*5*7)^i*((1/2+2/3+2/5+5/7)^imod1)=479^i
586 名前:132人目の素数さん mailto:sage [2024/09/05(木) 00:23:50.47 ID:+z5eAfXC.net] Σn=((1+2*3*5)*(2*3*5)/2-(2*3*5)*(2-1)*(3-1)*(5-1)/2) 1<n<2*3*5 Σe^(i*2pi*n/(a*b*c))=(-1)^(素数の個数) ←n=1以上a*b*c未満のa,b,cを素因数に持たない数の集合 e^(i*2pi*1/10)+e^(i*2pi*3/10)+e^(i*2pi*7/10)+e^(i*2pi*9/10)=1 ←2,5の2個の素数の組み合わせのため-1^2=1 e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)+e^(i*2pi*17/30)+e^(i*2pi*19/30)+e^(i*2pi*23/30)+e^(i*2pi*29/30)=-1 ←2,3,5の3個の素数の組み合わせのため-1^3=1 e^(i*2pi*1/30)*e^(i*2pi*7/30)*e^(i*2pi*11/30)*e^(i*2pi*13/30)*e^(i*2pi*17/30)*e^(i*2pi*19/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=1 e^(i*2pi*1/30)+e^(i*2pi*7/30)*e^(i*2pi*11/30)*e^(i*2pi*13/30)*e^(i*2pi*17/30)*e^(i*2pi*19/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=e^(-(i π)/15) + e^((i π)/15) e^(i*2pi*1/30)*e^(i*2pi*7/30)+e^(i*2pi*11/30)*e^(i*2pi*13/30)*e^(i*2pi*17/30)*e^(i*2pi*19/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=e^(-(8 i π)/15) + e^((8 i π)/15) e^(i*2pi*1/30)*e^(i*2pi*7/30)*e^(i*2pi*11/30)+e^(i*2pi*13/30)*e^(i*2pi*17/30)*e^(i*2pi*19/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=e^(-(11 i π)/15) + e^((11 i π)/15) e^(i*2pi*1/30)*e^(i*2pi*7/30)*e^(i*2pi*11/30)*e^(i*2pi*13/30)+e^(i*2pi*17/30)*e^(i*2pi*19/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=e^(-(2 i π)/15) + e^((2 i π)/15) Πe^(i*2pi*n/(a*b*c))をΠe^(i*2pi*n'/(a*b*c))+Πe^(i*2pi*n"/(a*b*c))に変更すると Πe^(i*2pi*n'/(a*b*c))+Πe^(i*2pi*n"/(a*b*c))=e^(-(i 2π)*X/(a*b*c)) +e^((i 2π)*X/(a*b*c)) ← 分子がプラスマイナスで対象になる
587 名前:132人目の素数さん mailto:sage [2024/09/05(木) 00:29:10.65 ID:+z5eAfXC.net] e^(i*2pi*1/30)*e^(i*2pi*19/30)*e^(i*2pi*11/30)*e^(i*2pi*17/30)+e^(i*2pi*13/30)*e^(i*2pi*7/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=e^(-(4 i π)/5) + e^((4 i π)/5) e^(i*2pi*1/30)*e^(i*2pi*19/30)*e^(i*2pi*11/30)+e^(i*2pi*17/30)*e^(i*2pi*13/30)*e^(i*2pi*7/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=e^(-(i π)/15) + e^((i π)/15) 項は入れ替えてもプラスマイナス対称になる(2つの集合に分ければ分子がプラスマイナス対称の足し算になる)
588 名前:132人目の素数さん mailto:sage [2024/09/05(木) 01:03:19.75 ID:+z5eAfXC.net] ln(e^(i*2pi*1/30)*e^(i*2pi*19/30)*e^(i*2pi*11/30))+ln(e^(i*2pi*17/30)*e^(i*2pi*13/30)*e^(i*2pi*7/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30))=ln(e^(-(i π)/15) )+ ln(e^((i π)/15))=0 ln(e^(i*2pi*(1+19+11)/30))+ln(e^(i*2pi*(17+13+7+23+29)/30))=ln(e^(-(i π)/15) )+ ln(e^((i π)/15))=0 (1+19+11) mod 30=-(17+13+7+23+29) mod 30 1<n<P(1)*P(2)・・・*P(l) (n=1以上、P(1)*P(2)・・・*P(l)(l個の素数の積)未満の数の集合) これを二つの集合A,Bに分けたさい A mod P(1)*P(2)・・・*P(l) =-B mod P(1)*P(2)・・・*P(l)になる
589 名前:132人目の素数さん mailto:sage [2024/09/06(金) 13:15:15.96 ID:xSI7irQH.net] (1+5+31+23)mod 42=-(13+17+19+25+29+11+37+41)mod 42 (1+31+23+17)mod 42=-(5+13+19+25+29+11+37+41)mod 42 (1+31+23+17+37)mod 42=-(5+13+19+25+29+11+41)mod 42 (1)mod 42=-(5+31+23+17+37+13+19+25+29+11+41)mod 42 (P-1)!≡-1 (mod p) (a*b*c-1)!-1≡-1 (mod a*b*c) (5+31+23+17+37+13+19+25+29+11+41)≡-1(mod 2*3*7) (2*3*7-1)!-1-(2*3*7)*N=(5+31+23+17+37+13+19+25+29+11+41) N = 796488728884852550194525286986684563455999999994 (a*b*c-1)!-1-(a*b*c)*N=Σn (n=1以上、a*b*c未満の素因数a,b,cを因数に持たない数の集合) このときNは必ず整数になる
590 名前:132人目の素数さん mailto:sage [2024/09/09(月) 00:40:59.22 ID:7j/mEr1c.net] 2^2*3*((3/2^2+1/3)mod1)=1 2^2*3*((2/2^2+2/3)mod1)=2 2^2*3*((1/2^2+3/3)mod1)=3 2^2*3*((4/2^2+1/3)mod1)=4 2^2*3*((3/2^2+2/3)mod1)=5 2^2*3*((2/2^2+3/3)mod1)=6 2^2*3*((1/2^2+1/3)mod1)=7 2^2*3*((4/2^2+2/3)mod1)=8 2^2*3*((3/2^2+3/3)mod1)=9 2^2*3*((2/2^2+1/3)mod1)=10 2^2*3*((1/2^2+2/3)mod1)=11 2^2*3*((a/2^2+b/3)mod1)=12 3+3+1+1=8=2*2^2 1+2+1+2=6=2*3 2^2*3*5*((a/2^2+b/3+c/5)mod1)=x 2^2*3*5*((3/2^2+2/3+3/5)mod1)=1 2^2*3*5*((1/2^2+2/3+1/5)mod1)=7 2^2*3*5*((1/2^2+1/3+3/5)mod1)=11 2^2*3*5*((3/2^2+2/3+4/5)mod1)=13 2^2*3*5*((3/2^2+1/3+1/5)mod1)=17 2^2*3*5*((1/2^2+2/3+2/5)mod1)=19 2^2*3*5*((1/2^2+1/3+4/5)mod1)=23 2^2*3*5*((3/2^2+1/3+2/5)mod1)=29 2^2*3*5*((1/2^2+2/3+3/5)mod1)=31 2^2*3*5*((3/2^2+2/3+1/5)mod1)=37 2^2*3*5*((3/2^2+1/3+3/5)mod1)=41 2^2*3*5*((1/2^2+2/3+4/5)mod1)=43 2^2*3*5*((1/2^2+1/3+1/5)mod1)=47 2^2*3*5*((3/2^2+2/3+2/5)mod1)=49 2^2*3*5*((3/2^2+1/3+4/5)mod1)=53 2^2*3*5*((1/2^2+1/3+2/5)mod1)=59 3+1+1+3+3+1+1+3+1+3+3+1+1+3+3+1=32=2^3*2^2 2+2+1+2+1+2+1+1+2+2+1+2+1+2+1+1=24=2^3*3 3+1+3+4+1+2+4+2+3+1+3+4+1+2+4+2=40=2^3*5 1«n<a^x*b^y*c^z (1«n<a^x*b^y*c^z かつn=a,b,cの素因数を持たない数の集合) a、b、cの指数部がx、y、zのとき Σn=a^x*b^y*c^z*((a^x-a^(x-1))*(b^y-b^(y-1))*(c^z-c^(z-1)))/2 になる
591 名前:132人目の素数さん mailto:sage [2024/09/10(火) 15:05:03.89 ID:+UCiFtmk.net] >>578-582 1≦n=2*3*5*7*((a/2+b/3+c/5+d/7)mod1) < 2*3*5*7 かつnが2,3,5,7を素因数を持たない数になるようa,b,c,dをきめてやる それらをa(k),b(k),c(k),d(k)とおくとき 2*3*5*7*((a(k)*a(k+m)/2+b(k)*b(k+m)/3+c(k)*c(k+m)/5+d(k)*d(k+m)/7)mod1) は 1≦n=2*3*5*7*((a(k)*a(k+m)/2+b(k)*b(k+m)/3+c(k)*c(k+m)/5+d(k)*d(k+m)/7)mod1)< 2*3*5*7 かつnが2,3,5,7を素因数を持たない数になる条件を満たす 2*3*5*7*((1*1/2+1*2/3+3*3/5+4*2/7)mod1)=23 2*3*5*7*((1*1/2+1*1/3+3*4/5+4*3/7)mod1)=199 2*3*5*7*((1*1/2+1*2/3+3*1/5+4*5/7)mod1)=131 2*3*5*7*((1*1/2+1*1/3+3*1/5+4*2/7)mod1)=121 2*3*5*7*((1*1/2+1*2/3+3*1/5+4*1/7)mod1)=71 2*3*5*7*((1*1/2+1*2/3+3*4/5+4*4/7)mod1)=179 2*3*5*7*((1*1/2+2*2/3+2*4/5+1*4/7)mod1)=1 2*3*5*7*((1*1/2+2*1/3+2*4/5+1*2/7)mod1)=11 2*3*5*7*((1*1/2+2*1/3+2*4/5+3*2/7)mod1)=131 2*3*5*7*((1*1/2+1*1/3+1*4/5+4*2/7)mod1)=163
592 名前:132人目の素数さん mailto:sage [2024/09/10(火) 20:52:03.16 ID:+UCiFtmk.net] (x^2+y^2+z^2-2*x*y-2*x*z-2*y*z)=(√x+√y+√z)*(√x+√y-√z)*(√x-√y+√z)*(√x-√y-√z) √((√x+√y+√z)*(√x+√y-√z)*(√x-√y+√z)*(√x-√y-√z))=i*z √(x^2+y^2+z^2-2*x*y-2*x*z-2*y*z)=i*z x=z/2 y=z/2 z=z √(x^2+x^2+z^2-2*x*x-2*x*z-2*x*z)=i*z √(y^2+y^2+z^2-2*y*y-2*y*z-2*y*z)=i*z
593 名前:132人目の素数さん mailto:sage [2024/09/11(水) 18:54:12.70 ID:pVxNTSlF.net] 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11 2*3*5*7*((1/2+1/3+4/5+3/7)mod1)=13 2*3*5*7*((1/2+2/3+1/5+5/7)mod1)=17 2*3*5*7*((1/2+1/3+2/5+6/7)mod1)=19 2*3*5*7*((1/2+2/3+4/5+1/7)mod1)=23 2*3*5*7*((1/2+2/3+2/5+4/7)mod1)=29 2*3*5*7*((1/2+1/3+3/5+5/7)mod1)=31 2*3*5*7*((1/2+1/3+1/5+1/7)mod1)=37 2*3*5*7*((1/2+2/3+3/5+3/7)mod1)=41 2*3*5*7*((1/2+1/3+4/5+4/7)mod1)=43 2*3*5*7*((1/2+2/3+1/5+6/7)mod1)=47 2*3*5*7*((1/2+2/3+4/5+2/7)mod1)=53 2*3*5*7*((1/2+2/3+2/5+5/7)mod1)=59 2*3*5*7*((1/2+1/3+3/5+6/7)mod1)=61 2*3*5*7*((1/2+1/3+1/5+2/7)mod1)=67 1≦n=2*3*5*7*((a/2+b/3+c/5+d/7)mod1) < 2*3*5*7 かつnが2,3,5,7を素因数を持たない数になるa,b,c,d n mod 2=1の時a=1 n mod 3=1の時b=1,n mod 3=2の時b=2 n mod 5=1の時c=3,n mod 5=3の時c=4, n mod 5=2の時c=1,n mod 5=4の時c =2 n mod 7=1の時d=4,n mod 7=4の時d=2,n mod 7=6の時d=3,n mod 7=3の時d=5,n mod 7=5の時d=6,n mod 7=2の時d =1
594 名前:132人目の素数さん mailto:sage [2024/09/11(水) 19:10:27.81 ID:pVxNTSlF.net] a*b*c*((x/a+y/b+z/c) mod 1)=1のとき c*(a*b*(x/a+y/b+z/c) mod 1)=1 →c*(a*b*(z/c) mod 1)=1 a*b*z mod c=1となるzを選べばいい 2*3*5*7*((x/2+y/3+z/5+a/7)mod1)=1 7*(2*3*5*(a/7) mod 1)=1 30*a mod 7=1 →a=4 2*3*5*7*((x/2+y/3+z/5+4/7)mod1)=1 5*(2*3*7*(z/5) mod 1)=1 42*z mod 5=1 →z=3 2*3*5*7*((x/2+y/3+3/5+4/7)mod1)=1 3*(2*5*7*(y/3) mod 1)=1 70*y mod 3=1 →y=1 x=1は明白
595 名前:132人目の素数さん mailto:sage [2024/09/14(土) 22:46:45.76 ID:hE76C901.net] e^(i*2pi*1/30)*e^(i*2pi*7/30)*e^(i*2pi*11/30)*e^(i*2pi*13/30)*e^(i*2pi*17/30)*e^(i*2pi*19/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=1 (1+5+31+23)mod 42=-(13+17+19+25+29+11+37+41)mod 42 (1+31+23+17)mod 42=-(5+13+19+25+29+11+37+41)mod 42 (1+31+23+17+37)mod 42=-(5+13+19+25+29+11+41)mod 42 (1)mod 42=-(5+31+23+17+37+13+19+25+29+11+41)mod 42 1≦n<a^x*b^y*c^z Σn=(a^x*b^y*c^z/2)*(a^x-a^(x-1))*(b^y-b^(y-1))*(c^z-c^(z-1)) (a^x*b^y*c^z/2)=nの平均値 (a^x-a^(x-1))*(b^y-b^(y-1))*(c^z-c^(z-1))=nの個数
596 名前:132人目の素数さん mailto:sage [2024/09/14(土) 22:46:50.96 ID:hE76C901.net] e^(i*2pi*1/6)+e^(i*2pi*5/6)=1 e^(i*2pi*2*1/6)+e^(i*2pi*2*5/6)=-1 e^(i*2pi*3*1/6)+e^(i*2pi*3*5/6)=-2 e^(i*2pi*4*1/6)+e^(i*2pi*4*5/6)=-1 e^(i*2pi*5*1/6)+e^(i*2pi*5*5/6)=1 e^(i*2pi*6*1/6)+e^(i*2pi*6*5/6)=2 e^(i*2pi*1/6)*e^(i*2pi*5/6)=1 1 mod 6=-5 mod 6 1+5 mod 6 = 0 mod 6 e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)+e^(i*2pi*17/30)+e^(i*2pi*19/30)+e^(i*2pi*23/30)+e^(i*2pi*29/30)=-1 e^(i*2pi*2*1/30)+e^(i*2pi*2*7/30)+e^(i*2pi*2*11/30)+e^(i*2pi*2*13/30)+e^(i*2pi*2*17/30)+e^(i*2pi*2*19/30)+e^(i*2pi*2*23/30)+e^(i*2pi*2*29/30)=1 e^(i*2pi*3*1/30)+e^(i*2pi*3*7/30)+e^(i*2pi*3*11/30)+e^(i*2pi*3*13/30)+e^(i*2pi*3*17/30)+e^(i*2pi*3*19/30)+e^(i*2pi*3*23/30)+e^(i*2pi*3*29/30)=2 e^(i*2pi*4*1/30)+e^(i*2pi*4*7/30)+e^(i*2pi*4*11/30)+e^(i*2pi*4*13/30)+e^(i*2pi*4*17/30)+e^(i*2pi*4*19/30)+e^(i*2pi*4*23/30)+e^(i*2pi*4*29/30)=1 e^(i*2pi*5*1/30)+e^(i*2pi*5*7/30)+e^(i*2pi*5*11/30)+e^(i*2pi*5*13/30)+e^(i*2pi*5*17/30)+e^(i*2pi*5*19/30)+e^(i*2pi*5*23/30)+e^(i*2pi*5*29/30)=4 e^(i*2pi*6*1/30)+e^(i*2pi*6*7/30)+e^(i*2pi*6*11/30)+e^(i*2pi*6*13/30)+e^(i*2pi*6*17/30)+e^(i*2pi*6*19/30)+e^(i*2pi*6*23/30)+e^(i*2pi*6*29/30)=-2 e^(i*2pi*7*1/30)+e^(i*2pi*7*7/30)+e^(i*2pi*7*11/30)+e^(i*2pi*7*13/30)+e^(i*2pi*7*17/30)+e^(i*2pi*7*19/30)+e^(i*2pi*7*23/30)+e^(i*2pi*7*29/30)=-1 e^(i*2pi*8*1/30)+e^(i*2pi*8*7/30)+e^(i*2pi*8*11/30)+e^(i*2pi*8*13/30)+e^(i*2pi*8*17/30)+e^(i*2pi*8*19/30)+e^(i*2pi*8*23/30)+e^(i*2pi*8*29/30)=1
597 名前:132人目の素数さん mailto:sage [2024/09/14(土) 23:06:04.40 ID:hE76C901.net] e^(i*2pi*9*1/30)+e^(i*2pi*9*7/30)+e^(i*2pi*9*11/30)+e^(i*2pi*9*13/30)+e^(i*2pi*9*17/30)+e^(i*2pi*9*19/30)+e^(i*2pi*9*23/30)+e^(i*2pi*9*29/30)=2 e^(i*2pi*10*1/30)+e^(i*2pi*10*7/30)+e^(i*2pi*10*11/30)+e^(i*2pi*10*13/30)+e^(i*2pi*10*17/30)+e^(i*2pi*10*19/30)+e^(i*2pi*10*23/30)+e^(i*2pi*10*29/30)=-4 e^(i*2pi*11*1/30)+e^(i*2pi*11*7/30)+e^(i*2pi*11*11/30)+e^(i*2pi*11*13/30)+e^(i*2pi*11*17/30)+e^(i*2pi*11*19/30)+e^(i*2pi*11*23/30)+e^(i*2pi*11*29/30)=-1 e^(i*2pi*12*1/30)+e^(i*2pi*12*7/30)+e^(i*2pi*12*11/30)+e^(i*2pi*12*13/30)+e^(i*2pi*12*17/30)+e^(i*2pi*12*19/30)+e^(i*2pi*12*23/30)+e^(i*2pi*12*29/30)=-2 e^(i*2pi*13*1/30)+e^(i*2pi*13*7/30)+e^(i*2pi*13*11/30)+e^(i*2pi*13*13/30)+e^(i*2pi*13*17/30)+e^(i*2pi*13*19/30)+e^(i*2pi*13*23/30)+e^(i*2pi*13*29/30)=-1 e^(i*2pi*14*1/30)+e^(i*2pi*14*7/30)+e^(i*2pi*14*11/30)+e^(i*2pi*14*13/30)+e^(i*2pi*14*17/30)+e^(i*2pi*14*19/30)+e^(i*2pi*14*23/30)+e^(i*2pi*14*29/30)=1 e^(i*2pi*15*1/30)+e^(i*2pi*15*7/30)+e^(i*2pi*15*11/30)+e^(i*2pi*15*13/30)+e^(i*2pi*15*17/30)+e^(i*2pi*15*19/30)+e^(i*2pi*15*23/30)+e^(i*2pi*15*29/30)=-8 e^(i*2pi*16*1/30)+e^(i*2pi*16*7/30)+e^(i*2pi*16*11/30)+e^(i*2pi*16*13/30)+e^(i*2pi*16*17/30)+e^(i*2pi*16*19/30)+e^(i*2pi*16*23/30)+e^(i*2pi*16*29/30)=1 e^(i*2pi*17*1/30)+e^(i*2pi*17*7/30)+e^(i*2pi*17*11/30)+e^(i*2pi*17*13/30)+e^(i*2pi*17*17/30)+e^(i*2pi*17*19/30)+e^(i*2pi*17*23/30)+e^(i*2pi*17*29/30)=-1 e^(i*2pi*18*1/30)+e^(i*2pi*18*7/30)+e^(i*2pi*18*11/30)+e^(i*2pi*18*13/30)+e^(i*2pi*18*17/30)+e^(i*2pi*18*19/30)+e^(i*2pi*18*23/30)+e^(i*2pi*18*29/30)=-2 e^(i*2pi*19*1/30)+e^(i*2pi*19*7/30)+e^(i*2pi*19*11/30)+e^(i*2pi*19*13/30)+e^(i*2pi*19*17/30)+e^(i*2pi*19*19/30)+e^(i*2pi*19*23/30)+e^(i*2pi*19*29/30)=-1 e^(i*2pi*X*1/30)+e^(i*2pi*X*7/30)+e^(i*2pi*X*11/30)+e^(i*2pi*X*13/30)+e^(i*2pi*X*17/30)+e^(i*2pi*X*19/30)+e^(i*2pi*X*23/30)+e^(i*2pi*X*29/30)=-1 Xが2,3,5の素因数をもたないときのみ-1になる
598 名前:132人目の素数さん mailto:sage [2024/09/14(土) 23:34:44.88 ID:hE76C901.net] e^(i*2pi*47*1/30)+e^(i*2pi*47*7/30)+e^(i*2pi*47*11/30)+e^(i*2pi*47*13/30)+e^(i*2pi*47*17/30)+e^(i*2pi*47*19/30)+e^(i*2pi*47*23/30)+e^(i*2pi*47*29/30)=-1 e^(i*2pi*49*1/30)+e^(i*2pi*49*7/30)+e^(i*2pi*49*11/30)+e^(i*2pi*49*13/30)+e^(i*2pi*49*17/30)+e^(i*2pi*49*19/30)+e^(i*2pi*49*23/30)+e^(i*2pi*49*29/30)=-1 e^(i*2pi*77*1/30)+e^(i*2pi*77*7/30)+e^(i*2pi*77*11/30)+e^(i*2pi*77*13/30)+e^(i*2pi*77*17/30)+e^(i*2pi*77*19/30)+e^(i*2pi*77*23/30)+e^(i*2pi*77*29/30)=-1 e^(i*2pi*X*1/6)+e^(i*2pi*X*5/6)=1 Xが2,3の素因数を持たないときのみe^(i*2pi*X*1/6)+e^(i*2pi*X*5/6)=1になる e^(i*2pi*X*1/30)+e^(i*2pi*X*7/30)+e^(i*2pi*X*11/30)+e^(i*2pi*X*13/30)+e^(i*2pi*X*17/30)+e^(i*2pi*X*19/30)+e^(i*2pi*X*23/30)+e^(i*2pi*X*29/30)=-1 Xが2,3,5の素因数をもたないときのみ e^(i*2pi*X*1/30)+e^(i*2pi*X*7/30)+e^(i*2pi*X*11/30)+e^(i*2pi*X*13/30)+e^(i*2pi*X*17/30)+e^(i*2pi*X*19/30)+e^(i*2pi*X*23/30)+e^(i*2pi*X*29/30)=-1になる Σe^(i*2pi*X*(n/(a*b*c)))=(-1) nは1≦n<a*b*cを満たす,a,b,cを素因数に持たない数の集合 Xがa,b,cを素因数に持たないとき,Σe^(i*2pi*X*(n/(a*b*c)))=(-1)になる
599 名前:132人目の素数さん mailto:sage [2024/09/15(日) 01:09:43.81 ID:RarM5Ogn.net] (6n+1)×A mod 6 =1か−1 (6n-1)×A mod 6 =1か−1 Aが2、3の素因数を持たない数の時上記を満たす e^(i*2pi*X*1/30)+e^(i*2pi*X*7/30)+e^(i*2pi*X*11/30)+e^(i*2pi*X*13/30)+e^(i*2pi*X*17/30)+e^(i*2pi*X*19/30)+e^(i*2pi*X*23/30)+e^(i*2pi*X*29/30)=-1 Xが2,3,5の素因数をもたないときのみ e^(i*2pi*X*1/30)+e^(i*2pi*X*7/30)+e^(i*2pi*X*11/30)+e^(i*2pi*X*13/30)+e^(i*2pi*X*17/30)+e^(i*2pi*X*19/30)+e^(i*2pi*X*23/30)+e^(i*2pi*X*29/30)=-1をみたすため e^(i*2pi*X*1/30)はe^(i*2pi*7/30)、e^(i*2pi*11/30)、e^(i*2pi*13/30)、e^(i*2pi*17/30)、e^(i*2pi*19/30)、e^(i*2pi*23/30)、e^(i*2pi*29/30) のいずれかになるし e^(i*2pi*X*7/30)はe^(i*2pi*1/30)、e^(i*2pi*11/30)、e^(i*2pi*13/30)、e^(i*2pi*17/30)、e^(i*2pi*19/30)、e^(i*2pi*23/30)、e^(i*2pi*29/30) のいずれかになり 全体として同時にe^(i*2pi*1/30)、e^(i*2pi*7/30)、e^(i*2pi*11/30)、e^(i*2pi*13/30)、e^(i*2pi*17/30)、e^(i*2pi*19/30)、e^(i*2pi*23/30)、e^(i*2pi*29/30)が存在する
600 名前:132人目の素数さん mailto:sage [2024/09/15(日) 10:42:50.94 ID:RarM5Ogn.net] Xが2,3,5の素因数を持たないとき Xに1,7,11,13,17,19,23,29を入れたとき X mod 30 =1,7,11,13,17,19,23,29 X*7 mod 30 =7,19,17,1,29,13,11,23 X*11 mod 30 =11,17,1,23,7,29,13,19 X*13 mod 30 =13,1,23,19,11,7,29,17 X*17 mod 30 =17,29,7,11,19,23,1,13 X*19 mod 30 =19,13,29,7,23,1,17,11 X*23 mod 30 =23,11,13,29,1,17,19,7 X*29 mod 30 =29,23,19,17,13,11,7,1 30で割ったあまりには規則性があり、同時に同じ数になることがない (全体として1,7,11,13,17,19,23,29は常に存在する)
601 名前:132人目の素数さん mailto:sage [2024/09/15(日) 11:29:08.05 ID:2ahvjW3f.net] Xに1から数字を入れるとき重複しない(11を変えても同じ) 11*X mod (2*3*5*7)= {11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 120, 131, 142, 153, 164, 175, 186, 197, 208, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 119, 130, 141, 152, 163, 174, 185, 196, 207, 8, 19, 30, 41, 52, 63, 74, 85, 96, 107, 118, 129, 140, 151, 162, 173, 184, 195, 206, 7, 18, 29, 40, 51, 62, 73, 84, 95, 106, 117, 128, 139, 150, 161, 172, 183, 194, 205, 6, 17, 28, 39, 50, 61, 72, 83, 94, 105, 116, 127, 138, 149, 160, 171, 182, 193, 204, 5, 16, 27, 38, 49, 60, 71, 82, 93, 104, 115, 126, 137, 148, 159, 170, 181, 192, 203, 4, 15, 26, 37, 48, 59, 70, 81, 92, 103, 114, 125, 136, 147, 158, 169, 180, 191, 202, 3, 14, 25, 36, 47, 58, 69, 80, 91, 102, 113, 124, 135, 146, 157, 168, 179, 190, 201, 2, 13, 24, 35, 46, 57, 68, 79, 90, 101, 112, 123, 134, 145, 156, 167, 178, 189, 200, 1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 111, 122, 133, 144, 155, 166, 177, 188, 199, 0}
602 名前:132人目の素数さん mailto:sage [2024/09/16(月) 20:34:50.45 ID:5ZRm9ucq.net] table((1*3*5*9*11*13*15*17*19*23*25*27)^n mod 2^2*7,n=1,k)=1 a^x*b^y*c^z未満のa,b,cを素因数に持たない数をすべてかけ、a^x*b^y*c^zで割った際の余りは1になる a^x*b^y*c^z未満のa,b,cを素因数に持たない数をすべてかけたものをn乗しても常に1
603 名前:132人目の素数さん mailto:sage [2024/09/16(月) 20:38:17.45 ID:5ZRm9ucq.net] table((1*5*7*11*13*17)^n mod 2*3^2,n=1,10)=1,17,1,17 a^x*b^y*c^z未満のa,b,cを素因数に持たない数をすべてかけたものを2n+1乗しても常に1 2n上の際は-1になる可能性がある
604 名前:132人目の素数さん mailto:sage [2024/09/17(火) 14:11:12.70 ID:46Ta869z.net] 1<n<a*b*c n=a,b,c,の素因数を持たない数の集合 nをすべてかけてa*b*cで割ったあまりは1 3*7*((1*2*4*5*8*10*11*13*16*17*19*20)/(3*7) mod 1)=1 このnから任意の数の指数部を変動させても出てくる数はnの集合のうちのいずれか 3*7*((1*2*4*5*8*10*11^0*13*16*17*19*20)/(3*7) mod 1)=2 3*7*((1*2*4*5*8^0*10*11^0*13*16*17*19*20)/(3*7) mod 1)=8 3*7*((1*2*4*5*8*10^0*11^1*13*16*17*19*20)/(3*7) mod 1)=19 3*7*((1*2*4^0*5*8*10^0*11^1*13*16*17*19*20)/(3*7) mod 1)=10 3*7*((1*2*4^0*5*8*10^0*11^1*13*16^0*17*19*20)/(3*7) mod 1)=19 3*7*((1*2*4^0*5*8*10^0*11^1*13*16^0*17^0*19*20)/(3*7) mod 1)=11
605 名前:132人目の素数さん mailto:sage [2024/09/19(木) 01:08:06.88 ID:iQmZzOwU.net] 1≦n≦a×b×c nがa、b、cを素因数に持たない集合の時 a×b×c/2を中心として対称になる nがxをもつとき、a×b×c-xもまたもつ 11×13×23-2×5×7=3×29×37
606 名前:132人目の素数さん mailto:sage [2024/09/19(木) 14:16:05.45 ID:CKJWV6/7.net] (30+1)*(30-1)*(30+7)*(30-7)*(30+11)*(30-11)*(30+13)*(30-13) mod 30 =1 -1*-7^2*-11^2*-13^2 mod (2*3*5) =1 -1^2*-3^2*-5^2*-9^2*-11^2*-13^2 mod (2^2*7) =1 1≦n≦a×b×c/2 nがa、b、cを素因数に持たない集合の時 Π(-1*n^2) mod (a*b*c)=1
607 名前:132人目の素数さん mailto:sage [2024/09/22(日) 14:30:25.37 ID:lRxtnWsz.net] (2^2*3*5)^8*(((3/2^2+2/3+3/5)mod1)*((1/2^2+2/3+1/5)mod1)*((1/2^2+1/3+3/5)mod1)*((3/2^2+2/3+4/5)mod1)*((3/2^2+1/3+1/5)mod1)*((1/2^2+2/3+2/5)mod1)*((1/2^2+1/3+4/5) mod1)*((3/2^2+1/3+2/5)mod 1)) =1×7×11×13×17×19×23×29 (2^2*3*5)^8*(((3/2^2+2/3+3/5)mod1)*((1/2^2+2/3+1/5)mod1)*((1/2^2+1/3+3/5)mod1)*((3/2^2+2/3+4/5)mod1)*((3/2^2+1/3+1/5)mod1)*((1/2^2+2/3+2/5)mod1)*((1/2^2+1/3+4/5) mod1)*((3/2^2+1/3+2/5)mod 1)) mod 60=1 (2^2*3*5)^8*(((3/2^2+2/3+3/5))*((1/2^2+2/3+1/5))*((1/2^2+1/3+3/5))*((3/2^2+2/3+4/5))*((3/2^2+1/3+1/5))*((1/2^2+2/3+2/5))*((1/2^2+1/3+4/5) )*((3/2^2+1/3+2/5))) mod 60=1
608 名前:132人目の素数さん mailto:sage [2024/09/23(月) 15:02:52.35 ID:qsY0VrKw.net] (1+7+11+13+17+19+23+29)=2*3*5*(2-1)*(3-1)*(5-1)/2 1/(2-1)*(3-1)*(5-1)=1/2*(2*3*5/(1+7+11+13+17+19+23+29)) 2^(zetazero[1])*3^(zetazero[1])*5^(zetazero[1])*(2^(zetazero[1])-2^(zetazero[1]-1))*(3^(zetazero[1])-3^(zetazero[1]-1))*(5^(zetazero[1])-5^(zetazero[1]-1))/2=4 e^(1.9022 i) 2^(zetazero[2])*3^(zetazero[2])*5^(zetazero[2])*(2^(zetazero[2])-2^(zetazero[2]-1))*(3^(zetazero[2])-3^(zetazero[2]-1))*(5^(zetazero[2])-5^(zetazero[2]-1))/2=4 e^(-1.51305 i)
609 名前:132人目の素数さん mailto:sage [2024/09/23(月) 16:19:21.20 ID:qsY0VrKw.net] table((1^(n)+3^(n)+5^(n)+9^(n)+11^(n)+13^(n) ) mod 28,n=1,20) ={14, 14, 14, 14, 14, 6, 14, 14, 14, 14, 14, 6, 14, 14, 14, 14, 14, 6, 14, 14} table((1^(n)*3^(n)*5^(n)*9^(n)*11^(n)*13^(n) ) mod 28,n=1,20) ={13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1} table((1^n+7^n+11^n+13^n+17^n+19^n+23^n+29^n ) mod 60,n=1,20) ={0, 20, 0, 8, 0, 20, 0, 8, 0, 20, 0, 8, 0, 20, 0, 8, 0, 20, 0, 8} table((1^n*7^n*11^n*13^n*17^n*19^n*23^n*29^n ) mod 60,n=1,20) ={1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
610 名前:132人目の素数さん mailto:sage [2024/09/23(月) 16:48:33.40 ID:qsY0VrKw.net] table((1^n*3^n*5^n*7^n*9^n*13^n*15^n*17^n*19^n*21^n ) mod 2*11,n=1,20) ={21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1} table((1^n*3^n*5^n*7^n*9^n*13^n*15^n*17^n*19^n ) mod 2*11,n=1,20) ={1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 1≦n≦a×b×c nがa、b、cを素因数に持たない集合の時(a×b×c-1は外す) Π(n) mod (a*b*c)=1
611 名前:132人目の素数さん mailto:sage [2024/09/28(土) 22:48:43.02 ID:AGM0XZFq.net] (e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30))=(-1)^(1/15) (1 + (-1)^(2/5) + (-1)^(2/3) + (-1)^(4/5)) =-0.5000000000000000000000000000000000000000000000000000000000000000000000000000000 + 2.352315054739227116793117268701450137849630373901243086108150830821507197296638 I +e^(2pi*i*1/210)+e^(2pi*i*11/210)+e^(2pi*i*13/210)+e^(2pi*i*17/210)+e^(2pi*i*19/210) +e^(2pi*i*23/210)+e^(2pi*i*29/210)+e^(2pi*i*31/210)+e^(2pi*i*37/210)+e^(2pi*i*41/210)=(-1)^(1/105) (1 + (-1)^(2/21) + (-1)^(4/35) + (-1)^(16/105) + (-1)^(6/35) + (-1)^(22/105) + (-1)^(4/15) + (-1)^(2/7) + (-1)^(12/35) + (-1)^(8/21)) +e^(2pi*i*43/210)+e^(2pi*i*47/210)+e^(2pi*i*53/210)+e^(2pi*i*59/210)+e^(2pi*i*61/210) +e^(2pi*i*67/210)+e^(2pi*i*71/210)+e^(2pi*i*73/210)+e^(2pi*i*79/210)+e^(2pi*i*83/210)=(-1)^(43/105) (1 + (-1)^(4/105) + (-1)^(2/21) + (-1)^(16/105) + (-1)^(6/35) + (-1)^(8/35) + (-1)^(4/15) + (-1)^(2/7) + (-1)^(12/35) + (-1)^(8/21)) +e^(2pi*i*89/210)+e^(2pi*i*97/210)+e^(2pi*i*101/210)+e^(2pi*i*103/210)=(-1)^(89/105) (1 + (-1)^(8/105) + (-1)^(4/35) + (-1)^(2/15)) +e^(2pi*i*107/210)+e^(2pi*i*109/210)+e^(2pi*i*113/210)+e^(2pi*i*121/210)+e^(2pi*i*127/210) +e^(2pi*i*131/210)+e^(2pi*i*137/210)+e^(2pi*i*139/210)+e^(2pi*i*143/210)+e^(2pi*i*149/210) +e^(2pi*i*151/210)+e^(2pi*i*157/210)+e^(2pi*i*163/210)+e^(2pi*i*169/210)+e^(2pi*i*167/210) +e^(2pi*i*173/210)+e^(2pi*i*179/210)+e^(2pi*i*181/210)+e^(2pi*i*187/210)+e^(2pi*i*191/210) +e^(2pi*i*193/210)+e^(2pi*i*197/210)+e^(2pi*i*199/210)+e^(2pi*i*209/210)
612 名前:132人目の素数さん mailto:sage [2024/09/28(土) 23:29:31.27 ID:AGM0XZFq.net] ((e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)))*((e^(i*2pi*29/30)+e^(i*2pi*23/30)+e^(i*2pi*19/30)+e^(i*2pi*17/30)))=5.78 ((e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*17/30)))*((e^(i*2pi*29/30)+e^(i*2pi*23/30)+e^(i*2pi*19/30)+e^(i*2pi*13/30)))=2.61 ((e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*19/30)+e^(i*2pi*13/30)))*((e^(i*2pi*29/30)+e^(i*2pi*23/30)+e^(i*2pi*11/30)+e^(i*2pi*17/30)))=1 ((e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*19/30)+e^(i*2pi*17/30)))*((e^(i*2pi*29/30)+e^(i*2pi*23/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)))=0.25 ((e^(i*2pi*1/30)+e^(i*2pi*23/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)))*((e^(i*2pi*29/30)+e^(i*2pi*7/30)+e^(i*2pi*19/30)+e^(i*2pi*17/30)))=0.38 ((e^(i*2pi*1/30)+e^(i*2pi*23/30)+e^(i*2pi*11/30)+e^(i*2pi*17/30)))*((e^(i*2pi*29/30)+e^(i*2pi*7/30)+e^(i*2pi*19/30)+e^(i*2pi*13/30)))=0.45 ((e^(i*2pi*1/30)+e^(i*2pi*23/30)+e^(i*2pi*19/30)+e^(i*2pi*13/30)))*((e^(i*2pi*29/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*17/30)))=1.51 ((e^(i*2pi*1/30)+e^(i*2pi*23/30)+e^(i*2pi*19/30)+e^(i*2pi*17/30)))*((e^(i*2pi*29/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)))=4
613 名前:132人目の素数さん mailto:sage [2024/09/28(土) 23:42:06.86 ID:AGM0XZFq.net] ((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))=2.61 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))=0.38 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))=3 ((e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)))*((e^(i*2pi*29/30)+e^(i*2pi*23/30)+e^(i*2pi*19/30)+e^(i*2pi*17/30)))=5.78=1/2 (4 + sqrt(5) + sqrt(3 (5 + 2 sqrt(5)))) ((e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*17/30)))*((e^(i*2pi*29/30)+e^(i*2pi*23/30)+e^(i*2pi*19/30)+e^(i*2pi*13/30)))=2.61=1/2 (3 + sqrt(5)) ((e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*19/30)+e^(i*2pi*13/30)))*((e^(i*2pi*29/30)+e^(i*2pi*23/30)+e^(i*2pi*11/30)+e^(i*2pi*17/30)))=1 ((e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*19/30)+e^(i*2pi*17/30)))*((e^(i*2pi*29/30)+e^(i*2pi*23/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)))=0.25=1/2 (4 - sqrt(5) - sqrt(3 (5 - 2 sqrt(5)))) ((e^(i*2pi*1/30)+e^(i*2pi*23/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)))*((e^(i*2pi*29/30)+e^(i*2pi*7/30)+e^(i*2pi*19/30)+e^(i*2pi*17/30)))=0.38=1/2 (3 - sqrt(5)) ((e^(i*2pi*1/30)+e^(i*2pi*23/30)+e^(i*2pi*11/30)+e^(i*2pi*17/30)))*((e^(i*2pi*29/30)+e^(i*2pi*7/30)+e^(i*2pi*19/30)+e^(i*2pi*13/30)))=0.45=1/2 (4 + sqrt(5) - sqrt(15 + 6 sqrt(5))) ((e^(i*2pi*1/30)+e^(i*2pi*23/30)+e^(i*2pi*19/30)+e^(i*2pi*13/30)))*((e^(i*2pi*29/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*17/30)))=1.51=1/2 (4 - sqrt(5) + sqrt(3 (5 - 2 sqrt(5)))) ((e^(i*2pi*1/30)+e^(i*2pi*23/30)+e^(i*2pi*19/30)+e^(i*2pi*17/30)))*((e^(i*2pi*29/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)))=4 7/2 + sqrt(5) + 1/2 sqrt(3 (5 + 2 sqrt(5)))+1+1/2 (7 - 2 sqrt(5) - sqrt(15 - 6 sqrt(5)))+1/2 (8 - sqrt(6 (5 - sqrt(5))))+4=16=2^4
614 名前:132人目の素数さん mailto:sage [2024/09/29(日) 00:33:13.69 ID:zrNEkg5o.net] e^(i*2pi*1/6)*e^(i*2pi*5/6)=1 (e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))=5.04 (e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))=0.64 (e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))=0.30 (e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))=2 =8 1≦n≦a×b×c nがa、b、cを素因数に持たない集合の時 2つの集合にわけてかけてすべて足すと整数になる
615 名前:132人目の素数さん mailto:sage [2024/09/29(日) 01:50:02.02 ID:zrNEkg5o.net] 1≦n≦a×b×c/2 nがa、b、cを素因数に持たない集合の時 Π(-1*n^2) mod (a*b*c)=1 (-1)^24*(1*11*13*17*19*23*29*31*37*41*43 *47*53*59*61*67*71*73*79*83*89 *97*101*103)^2 mod (2*3*5*7)=1
616 名前:132人目の素数さん mailto:sage [2024/09/29(日) 01:55:29.13 ID:zrNEkg5o.net] ((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))=2.61 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))=0.38 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))=3 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^2+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^2=7 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^3+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^3=18 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^4+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^4=47
617 名前:132人目の素数さん mailto:sage [2024/09/29(日) 01:59:22.11 ID:zrNEkg5o.net] ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^5+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^5=123=2*41 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^6+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^6=322=2*7*23 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^n+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^nは2,7で割り続ければ素数になる
618 名前:132人目の素数さん mailto:sage [2024/09/29(日) 02:03:08.34 ID:zrNEkg5o.net] ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^7+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^7=843=3*281 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^8+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^8=2207 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^9+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^9=5778=2*3^3*107 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^n+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^nは2または3または7で割り続ければ素数になる
619 名前:132人目の素数さん mailto:sage [2024/09/29(日) 02:12:55.77 ID:zrNEkg5o.net] ((e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14)))^3 +(e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))^3 +(e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))^3 +(e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))^3 =137
620 名前:132人目の素数さん mailto:sage [2024/09/29(日) 02:36:21.30 ID:zrNEkg5o.net] ((e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14)))^3 +(e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))^3 +(e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))^3 +(e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))^3 =666=2*3^2*37
621 名前:132人目の素数さん mailto:sage [2024/09/29(日) 02:53:10.70 ID:zrNEkg5o.net] (e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))* (e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))* (e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))* (e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))=2 a*b*c*d=整数 a+b+c+d=整数の時、a^n+b^n+c^n+d^n=整数になる
622 名前:132人目の素数さん mailto:sage [2024/09/29(日) 13:47:19.67 ID:daEjpvSH.net] (e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))* (e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))* (e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))=1 (e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))^3 +(e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))^3 +(e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))^3=129 a*b*c=整数 a+b+c=整数の時、a^n+b^n+c^n=整数になる(a,b,cの変数の個数によらない) Π (k=1,∞) a(k)=整数、Σ(k=1,∞)=a(k)を満たすとき Σ(k=1,∞) a(k)^n=整数になる
623 名前:132人目の素数さん mailto:sage [2024/09/29(日) 14:03:30.72 ID:zrNEkg5o.net] (100-1/3-18/(299 + sqrt(89293)))^n+(18/(299 + sqrt(89293)))^n+1/3^nは満たさないため あくまでも(e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))の形を満たすときのみ
624 名前:132人目の素数さん mailto:sage [2024/09/29(日) 14:25:33.47 ID:zrNEkg5o.net] (e^(i*2pi*1/6))^n+(e^(i*2pi*5/6))^n=1 (nが素因数2,3を持たないとき) (e^(i*2pi*1/30))^n+(e^(i*2pi*7/30))^n+(e^(i*2pi*11/30))^n+(e^(i*2pi*13/30))^n+(e^(i*2pi*17/30))^n+(e^(i*2pi*19/30))^n+(e^(i*2pi*23/30))^n+(e^(i*2pi*29/30))^n=-1(nが素因数2,3,5を持たないとき) Nがa*b*c*d未満のa,b,c,dを素因数に持たない数の集合の時 Σ(e^(i*2pi*N/(a*b*c*d)))^n=(-1)^4=1 nがa,b,c,dを素因数に持たないとき必ず1になる Nがa*b*c*d*e未満のa,b,c,d,eを素因数に持たない数の集合の時 Σ(e^(i*2pi*N/(a*b*c*d*e)))^n=(-1)^5=-1 nがa,b,c,d,eを素因数に持たないとき必ず-1になる
625 名前:132人目の素数さん mailto:sage [2024/09/29(日) 14:31:05.73 ID:zrNEkg5o.net] 2*3*5*7未満の数を並べ この数一つ一つに2,3,5,7を素因数に持たない数をかけて mod 2*3*5*7で余りを求めると もとの集合にもどる(一つ一つの数字は変化するが、すべて互いに重複しないため、集合の数全体に変化はない) 1 11,13,17,19,23,29,31,37,41,43, 47,53,59,61,67,71,73,79,83,89, 97,101,103,107,109,113,121,127,131,137, 139,143,149,151,157,163,169,167,173,179, 181,187,191,193,197,199,209
626 名前:132人目の素数さん mailto:sage [2024/09/29(日) 14:36:21.82 ID:zrNEkg5o.net] 3*5のとき 1,2,4,7,8,11,13,14 1*97 mod 3*5=7 2*97 mod 3*5=14 4*97 mod 3*5=13 7*97 mod 3*5=7 8*97 mod 3*5=11 11*97 mod 3*5=2 13*97 mod 3*5=1 14*97 mod 3*5=8 それぞれの数字が入れ替わるだけ
627 名前:132人目の素数さん mailto:sage [2024/09/30(月) 21:41:06.64 ID:J40OMolo.net] (1^(2n+1)+5^(2n+1)) mod (2*3)=0 (1^(2n+1)+7^(2n+1)+11^(2n+1)+13^(2n+1)+17^(2n+1)+19^(2n+1)+23^(2n+1)+29^(2n+1)) mod (2*3*5)=0 (1^(2n+1)+2^(2n+1)+4^(2n+1)+7^(2n+1)+8^(2n+1)+11^(2n+1)+13^(2n+1)+14^(2n+1)) mod (3*5)=0 a*b*c未満の素因数a,b,cを素因数に持たない数を2n+1乗してすべて足してa*b*cで割ると余りが0になる
628 名前:132人目の素数さん mailto:sage [2024/10/01(火) 21:58:42.83 ID:/55La6oX.net] ((2*3*5*7*11-1)*11^n mod (2*3*5*7*11))/11=209,199,89,139,59,19 table(((2*3*5*7*11*13-1)*13^n mod (2*3*5*7*11*13))/13,n=1,10) =2309,2297,2141,113,13*113,617,1091,323,1889,31*67,461,1373,1679,
629 名前:132人目の素数さん mailto:sage [2024/10/05(土) 23:19:52.64 ID:Pz9bhjgr.net] (X)^n mod a*b*c Xが素因数a,b,cを含まない数の時 (X)^n mod a*b*c=1となるnが必ず存在する
630 名前:132人目の素数さん mailto:sage [2024/10/05(土) 23:28:36.13 ID:Pz9bhjgr.net] (X)^n mod a*b*c=1 (53^2)^n mod 11^2*13^4*17*101*103=1 n=2^2×3×5^2×11×13^3×17*m (67^3)^n mod 2*11^2*13^4*17*101*103=1 n=2^2×5^2×11×13^3×17*m nは必ず2を持つ
631 名前:132人目の素数さん mailto:sage [2024/10/05(土) 23:34:05.88 ID:Pz9bhjgr.net] (67^5)^n mod 2*11^2*13^4*17*101*103=1 n=2^2×3×5×11×13^3×17*m (67^5)^n mod 2*19*11^2*13^4*17*101*103=1 n=2^2×3^2×5×11×13^3×17*m nは若い素数から順番に素因数を持つ
632 名前:132人目の素数さん mailto:sage [2024/10/06(日) 00:56:53.28 ID:ZhVJDpjP.net] (X)^n mod a*b*c Xが素因数a,b,cを含まない数の時 (X)^n mod a*b*c=1となるnが必ず存在する 11^2142 mod 103×127=1 12^2142 mod 103×127=1 (X)^n mod a*b*c=1となるnのとき (X+1)^n mod a*b*c=1も必ず満たす
633 名前:132人目の素数さん mailto:sage [2024/10/06(日) 01:00:54.73 ID:ZhVJDpjP.net] (X)^n mod a*b*c=1となるnが必ず存在するとき xを変動させても満たす 102^2142 mod 103×127=1 xは103、127を素因数に持たなければなんでもいい
634 名前:132人目の素数さん mailto:sage [2024/10/06(日) 01:13:58.93 ID:ZhVJDpjP.net] -n^204 mod 103×26=2677 nによらず2677で一定 (X)^n mod a*b*c=1となるnが必ず存在するとき xを変動させても満たす 102^2142 mod 103×127=1 xは103、127を素因数に持たなければなんでもいい (-X)^n mod a*b*c=素数になる確率が高い
635 名前:132人目の素数さん mailto:sage [2024/10/06(日) 20:18:37.56 ID:fimbC5jl.net] A^4 mod 30=1 Aが7以上の素数の時常に満たす (A*B)^4 mod 30=1 A,Bが7以上の素数の時常に満たす
636 名前:132人目の素数さん mailto:sage [2024/10/06(日) 20:22:35.11 ID:fimbC5jl.net] A^12 mod 210=1 Aが11以上の素数の時常に満たす (A*B)^12 mod 210=1 A,Bが11以上の素数の時常に満たす
637 名前:132人目の素数さん mailto:sage [2024/10/06(日) 20:25:44.90 ID:fimbC5jl.net] A^60 mod 2310=1 Aが13以上の素数の時常に満たす (A*B)^60 mod 2310=1 A,Bが13以上の素数の時常に満たす
638 名前:132人目の素数さん mailto:sage [2024/10/06(日) 20:33:06.97 ID:fimbC5jl.net] A^60 mod 30030=1 Aが17以上の素数の時常に満たす (A*B)^60 mod 30030=1 A,Bが17以上の素数の時常に満たす A^240 mod 510510=1 Aが19以上の素数の時常に満たす (A*B)^240 mod 510510=1 A,Bが19以上の素数の時常に満たす
639 名前:132人目の素数さん mailto:sage [2024/10/06(日) 22:20:34.17 ID:fimbC5jl.net] (2*3*5*7*11*13*17*(a/2+b/3+c/5+d/7+e/11+f/13+g/17))^240 mod 510510=1 a,b,c,d,e,f,gが分母の素因数を持たないとき常に下記になる(N=任意の整数) (a/2+b/3+c/5+d/7+e/11+f/13+g/17))^240=N/(2*3*5*7*11*13*17)^239+1/(2*3*5*7*11*13*17)^(240)
640 名前:132人目の素数さん mailto:sage [2024/10/06(日) 23:05:00.41 ID:fimbC5jl.net] ((2*3*5*7*11*13*17)*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)) ) mod 510510=1 ((2*3*5*7*11*13*17)*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)) )^(240) mod 510510=1 (2*3*5*7*11*13*17)*(a/2+b/3+c/5+d/7+e/11+f/13+g/17)=(1+N*(2*3*5*7*11*13*17))^(1/240) (1+N*(2*3*5*7*11*13*17))^(1/240)=任意の素数 ←任意の素数に19以上の素数を入れるときNは整数になる
641 名前:132人目の素数さん mailto:sage [2024/10/06(日) 23:06:34.31 ID:fimbC5jl.net] (1+N*(2*3*5*7*11*13*17))^(1/240)=任意の素数積 ←任意の素数積に19以上の素数積を入れるときNは整数になる (1+N*(2*3*5*7*11*13*17))^(1/240)=37*19 N = 364144496963529146373038268986706815806913366282371196800758616324327590845497179544257313641271208248410932534424620475769616180747009362581267624103363985306127152162463616588479425367966609756755807547394620569265681744378789761384880054301611073427293388476197607203388399881310470497623270531513517548778542277172928110152653058208631706908279694608250027639340104437622839129407179933580581237553781953516410383316476617957283341675333351578109557227824995715310046545143207175129038005084145934297865720469084865382628522935666037843748709279252857268780029331677009847023386037732606960498933746869921718575672626044427975618913801974795432169582740325805992921449658880
642 名前:132人目の素数さん mailto:sage [2024/10/06(日) 23:47:05.72 ID:fimbC5jl.net] 29^720m mod 510510*19=1 (1+N*(2*3*5*7*11*13*17*19))^(1/720)=31*43
643 名前:132人目の素数さん mailto:sage [2024/10/06(日) 23:48:11.04 ID:fimbC5jl.net] 29^7920m mod 510510*19*23=1 (1+N*(2*3*5*7*11*13*17*19*23))^(1/7920)=31*43
644 名前:132人目の素数さん mailto:sage [2024/10/07(月) 00:04:51.24 ID:uQjA25pO.net] A^18480m mod (2*3*5*7*11*13*17*19*23*29)=1 (1+N*(2*3*5*7*11*13*17*19*23*29))^(1/18480)=X X<31^2の整数のとき N,Xが同時に整数になる際、X=素数
645 名前:132人目の素数さん mailto:sage [2024/10/07(月) 00:31:03.83 ID:uQjA25pO.net] 79^55440m mod (2*3*5*7*11*13*17*19*23*29*31*37)=1 (1+N*(2*3*5*7*11*13*17*19*23*29*31*37))^(1/55440)=X X<43^2の整数のとき N,Xが同時に整数になる際、X=素数
646 名前:132人目の素数さん mailto:sage [2024/10/07(月) 01:30:56.25 ID:3dh6i5uu.net] 79^55440m mod (2*3*5*7*11*13*17*19*23*29*31*37)=1 (1+N*(2*3*5*7*11*13*17*19*23*29*31*37))^(1/55440m)=X X<43^2の整数のとき N,Xが同時に整数になる際、X=素数 m=0のとき (1+N*(2*3*5*7*11*13*17*19*23*29*31*37))^(1/0)=X このときも X<43^2の整数のとき N,Xが同時に整数になる際、X=素数
647 名前:132人目の素数さん mailto:sage [2024/10/07(月) 01:49:46.05 ID:FLwOH+F9.net] 13以上の素数の乗積を60乗したものから1を引くと 2310を必ず素因数に持つ
648 名前:132人目の素数さん mailto:sage [2024/10/09(水) 02:30:43.33 ID:pBj0EaZr.net] a=1 b=-1 c=c a+b+c=√(a^2+b^2+c^2+2×(-ab-bc-ac)) =c √(a+b+i×c) (a-b+i×c) (a+b-i×c) (a-b-i×c)
649 名前:132人目の素数さん mailto:sage [2024/10/13(日) 22:52:23.79 ID:e+mQWWbM.net] 1 mod 2=1 3 mod 4=-1 105 mod 8=1 2027025 mod 16=1 191898783962510625 mod 32=1 112275575285571389562324404930670903477890625 mod 64=1 164749260436028300985882145742271020352352323765318815064452725844663571025238239569133424206748199462890625 mod 128=1 2^n未満の奇数を全てかけて2^nで割ると余りが1になる(3 mod 4=-1は除く)
650 名前:132人目の素数さん mailto:sage [2024/10/19(土) 00:52:55.52 ID:HSWAHRFC.net] 素数a^2 未満のaを素因数に持たない数を全てかけてa^2で割ったあまりはa^2-1 素数a^3未満のaを素因数に持たない数を全てかけてa^3で割ったあまりは1 素数a^k未満のaを素因数に持たない数を全てかけてa^kで割ったあまりは1 kは3以上の整数 a^2+b^2=c^2 (x+1)/(n+1)+(y+1)/(m+1)=(z+1)/(l+1) a^k+b^k=c^k kは3以上の整数 (x-1)/(n)+(y-1)/(m)=(z-1)/(l) x、y、zはそれぞれa^k、b^k、c^k未満のa、b、cを素因数に持たない数の積 n、m、lは任意の整数、kが3以上のときこれを満たす整数がない
651 名前:132人目の素数さん mailto:sage [2024/10/19(土) 11:55:37.85 ID:HSWAHRFC.net] a^1!/(a*(1*2*3*4*・・・*a^0)) mod a = -1 ←(a-1)! mod a=-1 a^2!/(a*(1*2*3*4*・・・*a^1)) mod a^2 = -1 a^3!/(a*(1*2*3*4*・・・*a^2)) mod a^3 = 1 a^k!/(a*(1*2*3*4*・・・*a^k)) mod a^k = 1
652 名前:132人目の素数さん mailto:sage [2024/10/19(土) 12:01:28.42 ID:HSWAHRFC.net] a^1!/(a^0*(1*2*3*4*・・・*a^0)) mod a = -1 ←(a-1)! mod a=-1 a^2!/(a^(a)*(1*2*3*4*・・・*a^1)) mod a^2 = -1 a^3!/(a^(a^2)*(1*2*3*4*・・・*a^2)) mod a^3 = 1 a^k!/(a^(a^(k-1))*(1*2*3*4*・・・*a^k)) mod a^k = 1
653 名前:132人目の素数さん mailto:sage [2024/10/19(土) 12:10:35.88 ID:eSVNtglR.net] (a^1)!/(a^(a^(1-1))*((a^0)!)) mod a^1 = -1 (a^2)!/(a^(a^(2-1))*((a^1)!)) mod a^2 = -1 kが3以上の時1 (a^k)!/(a^(a^(k-1))*((a^(k-1))!)) mod a^k = 1 a^k+b^k=c^k kは3以上の整数 (x-1)/(n)+(y-1)/(m)=(z-1)/(l) x、y、zはそれぞれa^k、b^k、c^k未満のa、b、cを素因数に持たない数の積 x=(a^k)!/(a^(a^(k-1))*((a^(k-1))!)) y=(b^k)!/(b^(b^(k-1))*((b^(k-1))!)) z=(c^k)!/(c^(c^(k-1))*((c^(k-1))!)) (a^k)!/(a^(a^(k-1))*((a^(k-1))!))*1/n+(b^k)!/(b^(b^(k-1))*((b^(k-1))!))*1/m-(c^k)!/(c^(c^(k-1))*((c^(k-1))!))*1/l =1/n+1/m-1/l kが3以上の時、a,b,cに素数を入れた際、これを満たす整数n,m,lがない
654 名前:132人目の素数さん mailto:sage [2024/10/19(土) 12:52:14.30 ID:eSVNtglR.net] a≠2の素数の時 (a^1)!/(a^(a^(1-1))*((a^0)!)) mod a^1 = -1 (a^2)!/(a^(a^(2-1))*((a^1)!)) mod a^2 = -1 (a^k)!/(a^(a^(k-1))*((a^(k-1))!)) mod a^k = -1 a^k+b^k=c^k (x+1)/(n+1)+(y+1)/(m+1)=(z+1)/(l+1) x=(a^k)!/(a^(a^(k-1))*((a^(k-1))!)) y=(b^k)!/(b^(b^(k-1))*((b^(k-1))!)) z=(c^k)!/(c^(c^(k-1))*((c^(k-1))!)) kが3以上の時、a,b,cに素数を入れた際、これを満たす整数n,m,lがない
655 名前:132人目の素数さん mailto:sage [2024/10/19(土) 20:09:10.93 ID:eSVNtglR.net] (a^k)!/(a^(a^(k-1))*((a^(k-1))!)) mod a^k = -1 (a^k)!/(a^(a^(k-1))*((a^(k-1))!)) mod a^(k-1) = -1 (a^k)!/(a^(a^(k-1))*((a^(k-1))!)) mod a^(k-2) = -1 aが2以外の素数、kが任意の整数,0<n<≦kを満たすとき (a^k)!/(a^(a^(k-1))*((a^(k-1))!)) mod a^n = -1になる (17^4)!/(17^(17^(4-1))*((17^(4-1))!)) mod 17^4=-1 (17^4)!/(17^(17^(4-1))*((17^(4-1))!)) mod 17^3=-1 (17^4)!/(17^(17^(4-1))*((17^(4-1))!)) mod 17^2=-1 (17^4)!/(17^(17^(4-1))*((17^(4-1))!)) mod 17^1=-1
656 名前:132人目の素数さん mailto:sage [2024/10/28(月) 01:57:14.77 ID:E0D4Zlpv.net] 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*((1/2+2/3+2/5+3/7)mod1)=209 4*(210-1) mod 7+4=7 3*(210-1) mod 5+3=5 2^4*3*((11/2^4+1/3)mod1)=1 1*(2^4*3-1) mod 3 +1=3
657 名前:132人目の素数さん mailto:sage [2024/10/28(月) 16:04:09.10 ID:E0D4Zlpv.net] (2^n-1) mod 素数=0 x、yが互いに素な素数の時 (x^n-1) mod y=0をみたす整数nが必ず存在する
658 名前:132人目の素数さん mailto:sage [2024/11/02(土) 20:42:41.83 ID:T82g2h19.net] 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11 2*3*5*7*((1/2+1/3+4/5+3/7)mod1)=13 2*3*5*7*((1/2+2/3+1/5+5/7)mod1)=17 2*3*5*7*((1/2+1/3+2/5+6/7)mod1)=19 2*3*5*7*((1/2+1/3+1/5+1/7)mod1)=37 2^(n-1)*((1+1/2+1/2^2+・・・+1/2^(n-1)) mod1)=2^n-1 3^6*(sum(1/3^6,n=0,6) mod1)=364 →364*2+1=3^6 5^6*(sum(1/5^6,n=0,6) mod1)=3906 →3906*2^2+1=5^6 7^6*(sum(1/7^6,n=0,6) mod1)=19608 →19608*2*3+1=7^6 11^6*(sum(1/11^7,n=0,6) mod1)=177156 →177156*2*5+1=11^6
659 名前:132人目の素数さん mailto:sage [2024/11/02(土) 20:46:06.11 ID:T82g2h19.net] (k^6-1)/(k^6*(sum(1/k^n,n=0,6) mod1))=(k-1)
660 名前:132人目の素数さん mailto:sage [2024/11/02(土) 20:51:35.92 ID:T82g2h19.net] (2^k-1)=(2^k*(sum(1/2^n,n=0,k) mod1)) 2^k*(sum(1/2^n,n=0,k) mod1)=(2^l)*(sum(1/2^n,n=0,l) mod1)*(2^m)*(sum(1/2^n,n=0,m) mod1) 2^k=(2^l)*(2^m) →k=l+m
661 名前:132人目の素数さん mailto:sage [2024/11/02(土) 22:32:20.14 ID:T82g2h19.net] 2^2*((1/2+3/2^2) mod 1)=1 2^2*((1/2+1/2^2) mod 1)=3 2^3*((1/2+3/2^2+7/2^3) mod 1)=1 2^3*((1/2+1/2^2+1/2^3) mod 1)=7 2^4*((1/2+3/2^2+7/2^3+15/2^4) mod 1)=1 2^4*((1/2+1/2^2+1/2^3+1/2^4) mod 1)=15 2^5*((1/2+3/2^2+7/2^3+15/2^4+31/2^5) mod 1)=1 2^5*((1/2+1/2^2+1/2^3+1/2^4+1/2^5) mod 1)=31
662 名前:132人目の素数さん mailto:sage [2024/11/02(土) 22:38:00.25 ID:T82g2h19.net] 2^2*((1/2+3/2^2) mod 1)=1 2^3*((1/2+3/2^2+7/2^3) mod 1)=1 2^4*((1/2+3/2^2+7/2^3+9/2^4) mod 1)=11 2^5*((1/2+3/2^2+7/2^3+9/2^4+11/2^5) mod 1)=1 2^6*((1/2+3/2^2+7/2^3+9/2^4+11/2^5+13/2^6) mod 1)=15 2^7*((1/2+3/2^2+7/2^3+9/2^4+11/2^5+13/2^6+15/2^7) mod 1)=45 2^8*((1/2+3/2^2+7/2^3+9/2^4+11/2^5+13/2^6+15/2^7+17/2^8) mod 1)=107 2^9*((1/2+3/2^2+7/2^3+9/2^4+11/2^5+13/2^6+15/2^7+17/2^8+19/2^9) mod 1)=233 2^10*((1/2+3/2^2+7/2^3+9/2^4+11/2^5+13/2^6+15/2^7+17/2^8+19/2^9+21/2^10) mod 1)=487
663 名前:132人目の素数さん mailto:sage [2024/11/02(土) 22:47:47.41 ID:T82g2h19.net] 2^2*((1/2-3/2^2) mod 1)=3 2^3*((1/2-3/2^2+5/2^3) mod 1)=3 2^4*((1/2-3/2^2+5/2^3-7/2^4) mod 1)=15 2^5*((1/2-3/2^2+5/2^3-7/2^4+9/2^5) mod 1)=7 2^6*((1/2-3/2^2+5/2^3-7/2^4+9/2^5-11/2^6) mod 1)=3 2^7*((1/2-3/2^2+5/2^3-7/2^4+9/2^5-11/2^6+13/2^7) mod 1)=19 2^8*((1/2-3/2^2+5/2^3-7/2^4+9/2^5-11/2^6+13/2^7-15/2^8) mod 1)=23
664 名前:132人目の素数さん mailto:sage [2024/11/02(土) 23:03:38.31 ID:T82g2h19.net] (2^k-1)=a*b=(2^l*(sum(?/2^n,n=1,l) mod1))*(2^m*(sum(?/2^n,n=1,m) mod1)) 2^k=(2^l)*(2^m) →k=l+m (2^k-1)=a*b=(2^(k-m)*(sum(?/2^n,n=1,(k-m)) mod1))*(2^m*(sum(?/2^n,n=1,m) mod1)) (sum(?/2^n,n=1,(k-m)) mod1)*(sum(?/2^n,n=1,m) mod1)=(sum(1/2^n,n=0,k) mod1) 2^6-1=63=7*9=2^(6-m)*(sum(?/2^n,n=1,(6-m)) mod1)*2^m*(sum(?/2^n,n=1,m) mod1) =2^3*((1/2+1/2^2+1/2^3) mod 1)*2^2*((1/2+1/2^2) mod 1)*2^2*((1/2+1/2^2) mod 1)
665 名前:132人目の素数さん mailto:sage [2024/11/02(土) 23:11:50.10 ID:T82g2h19.net] 2^n*((1/2+1/2^2+1/2^3+・・・+1/2^n) mod1)=2^n-1 2^6*((1/2+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6) mod1)=2^6-1 2^3*((1/2+1/2^2+1/2^3) mod 1)*2^2*((1/2+1/2^2) mod 1)*2^2*((1/2+1/2^2) mod 1)=2^6-1 ((1/2+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6) mod1)=2*((1/2+1/2^2+1/2^3) mod 1)*((1/2+1/2^2) mod 1)^2
666 名前:132人目の素数さん [2024/11/03(日) 14:17:58.09 ID:Vpu5Dvbs.net] 2^1*((1/2) mod 1)=1 2^2*((1/2-5/2^2) mod 1)=1 2^3*((1/2-5/2^2+7/2^3) mod 1)=1 2^4*((1/2-5/2^2+7/2^3-17/2^4) mod 1)=1 2^5*((1/2-5/2^2+7/2^3-17/2^4+31/2^5) mod 1)=1 2^6*((1/2-5/2^2+7/2^3-17/2^4+31/2^5-65/2^6) mod 1)=1 2^7*((1/2-5/2^2+7/2^3-17/2^4+31/2^5-65/2^6+127/2^7) mod 1)=1 2^8*((1/2-5/2^2+7/2^3-17/2^4+31/2^5-65/2^6+127/2^7-257/2^8) mod 1)=1
667 名前:132人目の素数さん [2024/11/03(日) 15:06:24.81 ID:Vpu5Dvbs.net] (e^(i*2pi*1/33)+e^(i*2pi*2/33)+e^(i*2pi*4/33)+e^(i*2pi*5/33)+e^(i*2pi*7/33)+e^(i*2pi*8/33) +e^(i*2pi*10/33)+e^(i*2pi*13/33)+e^(i*2pi*14/33)+e^(i*2pi*16/33))= 0.499999999999999999999999999999999999999999999999999999999999999... + 6.15268994102660184306197366184573255467623337088995938118106185... i (e^(i*2pi*2*1/33)+e^(i*2pi*2*2/33)+e^(i*2pi*2*4/33)+e^(i*2pi*2*5/33)+e^(i*2pi*2*7/33)+e^(i*2pi*2*8/33) +e^(i*2pi*2*10/33)+e^(i*2pi*2*13/33)+e^(i*2pi*2*14/33)+e^(i*2pi*2*16/33))= 0.499999999999999999999999999999999999999999999999999999999999999... + 0.965094439116816219060338243843792485129416691279220561547274598... i (e^(i*2pi*n*1/33)+e^(i*2pi*n*2/33)+e^(i*2pi*n*4/33)+e^(i*2pi*n*5/33)+e^(i*2pi*n*7/33)+e^(i*2pi*n*8/33) +e^(i*2pi*n*10/33)+e^(i*2pi*n*13/33)+e^(i*2pi*n*14/33)+e^(i*2pi*n*16/33)) nが、3,11を素因数に含まないとき、実部は必ず1/2になる
668 名前:132人目の素数さん [2024/11/03(日) 15:15:11.18 ID:Vpu5Dvbs.net] (e^(i*2pi*n*32/33)+e^(i*2pi*n*31/33)+e^(i*2pi*n*29/33)+e^(i*2pi*n*28/33)+e^(i*2pi*n*26/33)+e^(i*2pi*n*25/33) +e^(i*2pi*n*23/33)+e^(i*2pi*n*20/33)+e^(i*2pi*n*19/33)+e^(i*2pi*n*17/33)) (e^(i*2pi*13*32/33)+e^(i*2pi*13*31/33)+e^(i*2pi*13*29/33)+e^(i*2pi*13*28/33)+e^(i*2pi*13*26/33)+e^(i*2pi*13*25/33) +e^(i*2pi*13*23/33)+e^(i*2pi*13*20/33)+e^(i*2pi*13*19/33)+e^(i*2pi*13*17/33)) こっちも同様に実部は必ず1/2 0<X<(a*b*c)/2かつX=a,b,cの素因数を持たない数の集合の時、n=a,b,cの素因数を持たない数をいれると必ず以下になる Σe^(i*2pi*n*X/(a*b*c))=1/2+i*Y(Y=任意の値) (a*b*c)/2<X<(a*b*c)かつX=a,b,cの素因数を持たない数の集合の時、n=a,b,cの素因数を持たない数をいれると必ず以下になる Σe^(i*2pi*n*X/(a*b*c))=1/2+i*Y(Y=任意の値)
669 名前:132人目の素数さん [2024/11/03(日) 15:16:51.38 ID:Vpu5Dvbs.net] 0<X<(a*b*c)/2かつX=a,b,cの素因数を持たない数の集合の時、n=a,b,cの素因数を持たない数をいれると必ず以下になる Σe^(i*2pi*n*X/(a*b*c))=(-1)^k*1/2+i*Y(Y=任意の値,k=素因数の数,3,11のときは2個なので-1^2=1) (a*b*c)/2<X<(a*b*c)かつX=a,b,cの素因数を持たない数の集合の時、n=a,b,cの素因数を持たない数をいれると必ず以下になる Σe^(i*2pi*n*X/(a*b*c))=(-1)^k*1/2+i*Y(Y=任意の値,k=素因数の数,3,11のときは2個なので-1^2=1)
670 名前:132人目の素数さん mailto:sage [2024/11/04(月) 15:37:05.33 ID:wgmwrEV/.net] (e^(i*2pi*n*1/15)+e^(i*2pi*n*2/15)+e^(i*2pi*n*4/15)+e^(i*2pi*n*7/15) = {0.5 + 2.35232 i, 0.5 + 1.12302 i, -1. + 1.17557 i, 0.5 + 0.450202 i, -2. + 1.73205 i, -1. - 1.90211 i, 0.5 + 0.0525521 i, 0.5 - 0.0525521 i, -1. + 1.90211 i, -2. - 1.73205 i, 0.5 - 0.450202 i, -1. - 1.17557 i, 0.5 - 1.12302 i, 0.5 - 2.35232 i, 4, 0.5 + 2.35232 i, 0.5 + 1.12302 i, -1. + 1.17557 i, 0.5 + 0.450202 i, -2. + 1.73205 i} 1/(1-2^(1-s))*sum((-1)^(n+1)/n^(s),n=1,∞) 1/(1-2^(1-(0.5+2.35232*i)))*sum((-1)^(n+1)/(15*n)^(0.5+2.35232*i),n=1,∞)=0.479852 - 0.218012 i 1/(1-2^(1-(0.5+1.12302*i)))*sum((-1)^(n+1)/n^(0.5+1.12302*i),n=1,∞)=0.214226 - 0.655502 i 1/(1-2^(1-(0.5+0.450202*i)))*sum((-1)^(n+1)/n^(0.5+0.450202*i),n=1,∞)=-0.564032 - 0.959647 i 1/(1-2^(1-(0.5+0.0525521*i)))*sum((-1)^(n+1)/n^(0.5+0.0525521*i),n=1,∞)=-1.43849 - 0.203846 i
671 名前:132人目の素数さん mailto:sage [2024/11/09(土) 13:33:24.33 ID:bF7P4dMS.net] 素因数a*b*c>X>0を満たすXの集合に素因数a,b,cを含まない数をかけてa*b*cで割った数のあまりを足すとnによらず常に一定 Σ(X*n) mod (a*b*c)=一定 Σe^(i*2pi*((X*n)mod(a*b*c))/(a*b*c))=(-1)^(素因数の個数)で一定 n=3,5の素因数を持たない数の時常に60になる (1*n)mod(3*5)+(2*n)mod(3*5)+(4*n)mod(3*5)+(7*n)mod(3*5)+(8*n)mod(3*5)+(11*n)mod(3*5)+(13*n)mod(3*5)+(14*n)mod(3*5)=60 (1*1)mod(3*5)+(2*1)mod(3*5)+(4*1)mod(3*5)+(7*1)mod(3*5)+(8*1)mod(3*5)+(11*1)mod(3*5)+(13*1)mod(3*5)+(14*1)mod(3*5) =1+2+4+7+8+11+13+14=60 (1*101)mod(3*5)+(2*101)mod(3*5)+(4*101)mod(3*5)+(7*101)mod(3*5)+(8*101)mod(3*5)+(11*101)mod(3*5)+(13*101)mod(3*5)+(14*101)mod(3*5) =11+7+14+2+13+1+8+4=60 e^(i*2pi*((1*n)mod(3*5))/(3*5))+e^(i*2pi*((2*n)mod(3*5))/(3*5))+e^(i*2pi*((4*n)mod(3*5))/(3*5))+e^(i*2pi*((7*n)mod(3*5))/(3*5))=1/2+i*Y e^(i*2pi*((8*n)mod(3*5))/(3*5))+e^(i*2pi*((11*n)mod(3*5))/(3*5))+e^(i*2pi*((13*n)mod(13*5))/(3*5))+e^(i*2pi*((14*n)mod(3*5))/(3*5))=1/2-i*Y
672 名前:132人目の素数さん mailto:sage [2024/11/09(土) 16:45:00.18 ID:bF7P4dMS.net] (1*n)mod(2^2*3*5)+(7*n)mod(13*5)+(11*n)mod(2^2*3*5)+(13*n)mod(2^2*3*5)+(17*n)mod(2^2*3*5)+(19*n)mod(2^2*3*5)+(23*n)mod(2^2*3*5)+(29*n)mod(2^2*3*5) +(31*n)mod(2^2*3*5)+(37*n)mod(13*5)+(41*n)mod(2^2*3*5)+(43*n)mod(2^2*3*5)+(47*n)mod(2^2*3*5)+(49*n)mod(2^2*3*5)+(53*n)mod(2^2*3*5)+(59*n)mod(2^2*3*5) =1+7+11+13+17+19+23+29+31+37+41+43+47+49+53+59=480
673 名前:132人目の素数さん mailto:sage [2024/11/09(土) 19:36:55.77 ID:bF7P4dMS.net] prime[n]=n番目の素数 prime(∞+1)^2*Π(n=1→∞)(1-1/prime[n])≒(0以上prime(∞+1)^2未満の素数の数)→∞ prime(∞+1)^(2s)*Π(n=1→∞)(1-1/prime[n]^s)≒(0以上prime(∞+1)^(2s)未満の素数の数)→∞ prime(∞+1)^(2s)/(0以上prime(∞+1)^(2s)未満の素数の数)≒1/Π(n=1→∞)(1-1/prime[n]^s)=ζ(s)=1/(1-2^(1-s))*Σ(n=1→∞)(-1)^(n+1)*e^(i*-Im(s)*ln(n))/n^(Re(s)) prime(∞+1)^(2s)/(0以上prime(∞+1)^(2s)未満の素数の数)=1/(1-2^(1-s))*Σ(n=1→∞)(-1)^(n+1)*e^(i*-Im(s)*ln(n))/n^(Re(s))→0 s=1/2+iy prime(∞+1)^(1+i*2y)/(0以上prime(∞+1)^(1+i*2y)未満の素数の数)≒1/(1-2^(1/2-i*y))*Σ(n=1→∞)(-1)^(n+1)*e^(i*-y*ln(n))/n^(1/2)→0
674 名前:132人目の素数さん mailto:sage [2024/11/10(日) 23:46:24.27 ID:knaEYhHC.net] e^(i*2pi*(1*(n))/(2*3*5))+e^(i*2pi*(7*(n))/(2*3*5))+e^(i*2pi*(11*(n))/(2*3*5))+e^(i*2pi*(13*(n))/(2*3*5))=1/2+i*Y(n=2,3,5を素因数に持つとき),-1/2+i*Y(n=2,3,5を素因数に持たないとき)
675 名前:132人目の素数さん mailto:sage [2024/11/10(日) 23:49:11.90 ID:knaEYhHC.net] e^(i*2pi*(1*(n))/(2*3*5))+e^(i*2pi*(7*(n))/(2*3*5))+e^(i*2pi*(11*(n))/(2*3*5))+e^(i*2pi*(13*(n))/(2*3*5))=1/2+i*Y(n=2^kのとき),-1/2+i*Y(n=2,3,5を素因数に持たないとき)
676 名前:132人目の素数さん mailto:sage [2024/11/11(月) 00:32:13.60 ID:PFpzXy5b.net] e^(i*2pi*(1^(n))/(2*3*5))+e^(i*2pi*(7^(n))/(2*3*5))+e^(i*2pi*(11^(n))/(2*3*5))+e^(i*2pi*(13^(n))/(2*3*5)) =-1/2+i*Y(n=2k+1のとき)
677 名前:132人目の素数さん mailto:sage [2024/11/12(火) 19:42:38.61 ID:5PtRFVCd.net] prime[61]^2*product((1-1/prime(n)),n=1,60)≒7859.86 ← primepi[prime[61]^2]=7842 prime[k+1]^2*product((1-1/prime(n)),n=1,k)≒prime[k+1]^2未満の素数の数 prime[k+1]/log(prime[k+1])≒prime[k+1]^2*product((1-1/prime(n)),n=1,k) ζ(1)=lim[k→∞] 1/product((1-1/prime(n)),n=1,k)≒prime[k+1]*log(prime[k+1])=log((prime[k+1])^(prime[k+1])) ζ(1)=∞=log(無限の素数^無限の素数)
678 名前:132人目の素数さん mailto:sage [2024/11/17(日) 13:22:58.32 ID:aAc4FBay.net] (e^(i*2pi*n*1/15)+e^(i*2pi*n*2/15)+e^(i*2pi*n*4/15)+e^(i*2pi*n*7/15) = {0.5 + 2.35232 i, 0.5 + 1.12302 i, -1. + 1.17557 i, 0.5 + 0.450202 i, -2. + 1.73205 i, -1. - 1.90211 i, 0.5 + 0.0525521 i, 0.5 - 0.0525521 i, -1. + 1.90211 i, -2. - 1.73205 i, 0.5 - 0.450202 i, -1. - 1.17557 i, 0.5 - 1.12302 i, 0.5 - 2.35232 i, 4, 0.5 + 2.35232 i, 0.5 + 1.12302 i, -1. + 1.17557 i, 0.5 + 0.450202 i, -2. + 1.73205 i} (0.5 + 2.35232 i)*(0.5 + 1.12302 i)*(0.5 + 0.450202 i)*(0.5 + 0.0525521 i) =-0.978151... -0.207913... i=1. e^(-2.93215 i) Xが0<X<a*b*c/2かつa,b,cを素因数に持たない集合の時 Π(Σe^(i*2pi*X/(a*b*c)))=e^(i*Y) ←絶対値が必ず1になる
679 名前:132人目の素数さん mailto:sage [2024/11/17(日) 14:49:57.88 ID:aAc4FBay.net] a=2,b=3,c=5のとき e^(i*2pi*n*1/30)+e^(i*2pi*n*7/30)+e^(i*2pi*n*11/30)+e^(i*2pi*n*13/30) = {-0.5 + 2.35232 i, 0.5 - 1.12302 i, 1 + 1.17557 i, 0.5 - 0.450202 i, 2. + 1.73205 i, -1. + 1.90211 i, -0.5 + 0.0525521 i, 0.5 + 0.0525521 i, 1. + 1.90211 i, -2. + 1.73205 i, -0.5 - 0.450202 i, -1. + 1.17557 i, -0.5 - 1.12302 i, 0.5 + 2.35232 i, -4, 0.5 - 2.35232 i, -0.5 + 1.12302 i, -1. - 1.17557 i, -0.5 + 0.450202 i, -2. - 1.73205 i} (-0.5 + 2.35232 i)*(-0.5 + 0.0525521 i)*(-0.5 - 0.450202 i)*(-0.5 - 1.12302 i) =0.913548... +0.406738... i=e^(0.418879 i)
680 名前:132人目の素数さん mailto:sage [2024/11/27(水) 01:01:21.18 ID:aI1eGf+W.net] prime(n+1)^2×Π(1-1/prime(n))=prime(n+1)^2/log(prime(n+1)^2) prime(n+1)=e^(1/2×1/Π(1-1/prime(n))) prime(∞)=e^(ζ(1)/2)←無限大の素数
681 名前:132人目の素数さん [2025/01/31(金) 07:10:29.36 ID:5eyKwJlUH] 地球破壊して人殺すために知事やってる小池百合子に限らんが日本はいまだかつてマトモな税金の使い方したことがないよな 朝から晩までJALだのANAた゛の警視庁だのテロリストに都心までクソ航空騒音まみれにさせて静音が生命線のIT人材絶滅させながらDXた゛の 自分の力を存分に發揮できる環境の確立だのそれっぽく聞こえる話を適当にAIに作らせて読み上け゛てるだけなのがバレバレ ミンアウンフラインみたいなの讃えてる腐敗組織警視庁とか氣色惡いにも程があるな ttps://imgur.com/cDy3b5l 毎日グルグル血税で遊覧へリ飛ばして石油燃やしまくって望遠カメラで女風呂のぞき見しなか゛ら莫大な温室効果ガスまき散らして気候変動 海水温上昇、土砂崩れ、洪水、大雪,熱中症にと災害連発させて人殺しまくって閑静な住宅地まで凄まじい爆音まき散らしてマッチポンプ 丸出しで住民ヰライラ犯罪惹起して利権倍増しながら毎日不起訴発表つまり誤認逮捕だらけに冤罪賠償を税金で補填させまくりのこいつら 解体すれば犯罪激減するのは明らかなんだしマトモな民主国ならクソ警視庁をふ゛っ潰すと言って知事やらに立候補するやつが出てこないとな (ref.) ttps://www.call4.jp/info.php?tУpе=iтems&id=I0000062 ttps://haneda-projеcТ.jimdofree.com/ , ttps://flight-rouΤe.com/ Ttps://n-souonhigaisosyoudan.amebaownd.com/
682 名前:132人目の素数さん mailto:sage [2025/03/04(火) 12:56:19.06 ID:ptMRMVaY.net] e(ix)=1+ix-x^2/2!-ix^3/3!+x^4/4!+・・・ e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)=-(1/2)+(2.35231505)*i (2-1)*(3-1)*(5-1)/2-1/2!*(2π/30)^2*(1^2+7^2+11^2+13^2)+1/4!*(2π/30)^4*(1^4+7^4+11^4+13^4)-1/6!*(2π/30)^6*(1^6+7^6+11^6+13^6)≒-0.588 (2-1)*(3-1)*(5-1)/2-1/2!*(2π/30)^2*(1^2+7^2+11^2+13^2)+1/4!*(2π/30)^4*(1^4+7^4+11^4+13^4)-1/6!*(2π/30)^6*(1^6+7^6+11^6+13^6)+1/8!*(2π/30)^8*(1^8+7^8+11^8+13^8)≒-0.493
683 名前:132人目の素数さん mailto:sage [2025/03/04(火) 13:31:48.74 ID:ptMRMVaY.net] (a-1)*(b-1)*(c-1)/2-1/2!*(2π/(a*b*c))^2*(1^2+x1^2+x2^2+x3^2)+1/4!*(2π/(a*b*c))^4*(1^4+x1^4+x2^4+x3^4)≒-(1/2) ((a-1)*(b-1)*(c-1))≒1/2!*(2π/(a*b*c))^2*(1^2+x1^2+x2^2+x3^2)-1/4!*(2π/(a*b*c))^4*(1^4+x1^4+x2^4+x3^4)-(1/2) 1/((1-1/a)*(1-1/b)*(1-1/c))≒(a*b*c)/(-(1/2)+1/2!*(2π/(a*b*c))^2*(1^2+x1^2+x2^2+x3^2)-1/4!*(2π/(a*b*c))^4*(1^4+x1^4+x2^4+x3^4))
684 名前:132人目の素数さん mailto:sage [2025/03/04(火) 19:21:13.45 ID:ptMRMVaY.net] A=(a1-1)*(a2-1)*・・・*(an-1) n個の素数から1を引いた積 B=a1*a2*・・・*an n個の素数の積 x1,x2,x3,,,,xk ←1より大きくA/2未満かつa1からanまでの素因数を持たない数 A/2-1/2!*(2π/B)^2*(1^2+x1^2+x2^2+x3^2+・・・+xk^2)+1/4!*(2π/B)^4*(1^4+x1^4+x2^4+x3^4+・・・+xk^4)≒(-1)^n*(1/2) -1/2!*(2π/B)^2*(x1^2+x2^2+x3^2+・・・+xk^2)+1/4!*(2π/B)^4*(x2^4+x3^4+・・・+xk^4)=M 1/4!*(2π/B)^4*x1^4 -1/2!*(2π/B)^2*x2^2+M+A/2-(-1)^n*(1/2)≒0 Mをa1からanの素数で近似できればx1の素数が出る
685 名前:132人目の素数さん mailto:sage [2025/03/09(日) 16:47:01.93 ID:wx0mrTvE.net] table((prime(189)^n mod prime(113)),n=1,200) {512, 536, 484, 391, 284, 413, 442, 482, 601, 446, 62, 277, 531, 392, 179, 332, 309, 256, 268, 242, 504, 142, 515, 221, 241, 609, 223, 31, 447, 574, 196, 398, 166, 463, 128, 134, 121, 252, 71, 566, 419, 429, 613, 420, 324, 532, 287, 98, 199, 83, 540, 64, 67, 369, 126, 344, 283, 518, 523, 615, 210, 162, 266, 452, 49, 408, 350, 270, 32, 342, 493, 63, 172, 450, 259, 570, 616, 105, 81, 133, 226, 333, 204, 175, 135, 16, 171, 555, 340, 86, 225, 438, 285, 308, 361, 349, 375, 113, 475, 102, 396, 376, 8, 394, 586, 170, 43, 421, 219, 451, 154, 489, 483, 496, 365, 546, 51, 198, 188, 4, 197, 293, 85, 330, 519, 418, 534, 77, 553, 550, 248, 491, 273, 334, 99, 94, 2, 407, 455, 351, 165, 568, 209, 267, 347, 585, 275, 124, 554, 445, 167, 358, 47, 1, 512, 536, 484, 391, 284, 413, 442, 482, 601, 446, 62, 277, 531, 392, 179, 332, 309, 256, 268, 242, 504, 142, 515, 221, 241, 609, 223, 31, 447, 574, 196, 398, 166, 463, 128, 134, 121, 252, 71, 566, 419, 429, 613, 420, 324, 532}
686 名前:132人目の素数さん mailto:sage [2025/03/09(日) 16:49:08.97 ID:wx0mrTvE.net] A>Bのとき A番目の素数をn乗してB番目の素数で除算したとき1になるnが必ず存在する prime(A)^n mod prime(B)=1 このとき prime(A)^(n+1) mod prime(B)=prime(A)^(1) mod prime(B)になる
687 名前:132人目の素数さん mailto:sage [2025/03/28(金) 21:42:05.33 ID:HB5RGX+F.net] X<Y(Y=任意の素数)のとき X^Y mod Y = X 9^17 mod 17=9 5^23 mod 23=5
688 名前:132人目の素数さん mailto:sage [2025/03/28(金) 21:49:50.83 ID:HB5RGX+F.net] X<Y(Y=任意の素数)のとき X^Y mod Y = X 9^17 mod 17=9 5^23 mod 23=5 X^Y=N*Y+X (X^Y-X)/Y=N (X<Y(Y=任意の素数)のときNは必ず整数になる) (11^17-11)/17=29732178147017280 (30^37-30)/37=121698352943512800810810810810810810810810810810810810
689 名前:132人目の素数さん mailto:sage [2025/03/29(土) 00:48:07.28 ID:4RIrZA+n.net] 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*((1^2/2+1^3/3+3^5/5+4^7/7)mod1)=1 2*3*5*7*((1^1/2+1^2/3+3^4/5+4^6/7)mod1)=37 2*3*5*7*((1^3/2+1^4/3+3^6/5+4^8/7)mod1)=193
690 名前:132人目の素数さん mailto:sage [2025/03/29(土) 14:38:38.18 ID:AASfiNUA.net] 2*3*5*7*((1^2/2+1^3/3+3^5/5+4^7/7)mod1)=1 2*3*5*7*((1^4/2+1^9/3+3^25/5+4^49/7)mod1)=1 2*3*5*7*((1^8/2+1^27/3+3^125/5+4^343/7)mod1)=1 2*3*5*7*((1^(2^n)/2+1^(3^n)/3+3^(5^n)/5+4^(7^n)/7)mod1)=1 2*3*5*7*((1^4/2+1^6/3+3^10/5+4^14/7)mod1)=193 2*3*5*7*((1^6/2+1^9/3+3^15/5+4^21/7)mod1)=79 2*3*5*7*((1^8/2+1^12/3+3^20/5+4^28/7)mod1)=127 2*3*5*7*((1^10/2+1^15/3+3^25/5+4^35/7)mod1)=151 2*3*5*7*((1^12/2+1^18/3+3^30/5+4^42/7)mod1)=163 2*3*5*7*11*((1/2+2^(3*n)/3+3^(5*n)/5+1/7+1/11) mod1)=1,2003,(1849=43^2),617
691 名前:132人目の素数さん mailto:sage [2025/03/29(土) 14:43:19.46 ID:AASfiNUA.net] 2*3*5*7*((1^(2*n)/2+1^(3*n)/3+3^(5*n)/5+4^(7*n)/7)mod1)=1, 193, 79, 127, 151, 163, 169, 67, 121, 43, 109, 37,) a*b*c*(x/a+y/b+z/c) mod 1 =1のとき a*b*c*(x^(a*n)/a+y^(b*n)/b+z^(c*n)/c) mod 1 で出る数はa*b*c未満かつ周期性があり素数か素数の二乗になる可能性がある
692 名前:132人目の素数さん mailto:sage [2025/03/29(土) 15:03:50.72 ID:AASfiNUA.net] table((2*3*5*7*11*13)*(((1/2)+(2^(3n)/3)+(1/5)+(6^(7n)/7)+(6^(11n)/11)+(3^(13n)/13)) mod1),n=1,50) X={1, 4241, 28141, 6761, 24781, 21251, 5461, 6971, 14491, 14951, 13861, 15791, 2731, 20621, 6301, 25871, 19321, 18521, 19111, 28811, 25411, 20411, 16591, 2141, 10921, 9701, 841, 23141, 2941, 10331, 1, 4241, 28141, 6761, 24781, 21251, 5461, 6971, 14491, 14951, 13861, 15791, 2731, 20621, 6301, 25871, 19321, 18521, 19111, 28811} 0<X<30030=(2*3*5*7*11*13) 17<Xの素因数<√(30030)=173が存在してしまう可能性がある
693 名前:132人目の素数さん mailto:sage [2025/03/30(日) 15:08:18.58 ID:IMkopg+/.net] 1+7+11+13+17+19+23+29=2*3*5*1/2*(2-1)*(3-1)*(5-1) 1+7+11+13=32 17+19+23+29=88 cos(2pi*1/30)+cos(2pi*7/30)+cos(2pi*11/30)+cos(2pi*13/30)=-1/2 cos(2pi*1/30)*cos(2pi*7/30)*cos(2pi*11/30)*cos(2pi*13/30)=1/16 cos(2pi*17/30)+cos(2pi*19/30)+cos(2pi*23/30)+cos(2pi*29/30)=-1/2 cos(2pi*17/30)*cos(2pi*19/30)*cos(2pi*23/30)*cos(2pi*29/30)=1/16 a*b*c*((x/a+y/b+z/c) mod1)=N のときΣcos(2pi*N/(a*b*c))=(-1)^(a,b,cの素因数の数)になり Πcos(2pi*N/(a*b*c))=1/2^((a-1)*(b-1)*(c-1))になる←Nの集合を半分に割ってやるとそれぞれ1/2^(((a-1)*(b-1)*(c-1))/2)になる
694 名前:132人目の素数さん mailto:sage [2025/03/30(日) 15:08:48.59 ID:IMkopg+/.net] 1+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+83+89+97+101+103+107+109+113+121 +127+131+137+139+143+149 +151+157+163+167+169+173+ 179+181+187+191+193+197 +199+209=2*3*5*7*1/2*(2-1)*(3-1)*(5-1)*(7-1) 1+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+83+89+97+101+103=1248 107+109+113+121+127+131+137+139+143+149+151+157+163+167+169+173+179+181+187+191+193+197+199+209=3792 cos(2pi*1/210)+cos(2pi*11/210)+cos(2pi*13/210)+cos(2pi*17/210)+cos(2pi*19/210)+cos(2pi*23/210) +cos(2pi*29/210)+cos(2pi*31/210)+cos(2pi*37/210)+cos(2pi*41/210)+cos(2pi*43/210)+cos(2pi*47/210) +cos(2pi*53/210)+cos(2pi*59/210)+cos(2pi*61/210)+cos(2pi*67/210)+cos(2pi*71/210)+cos(2pi*73/210) +cos(2pi*79/210)+cos(2pi*83/210)+cos(2pi*89/210)+cos(2pi*97/210)+cos(2pi*101/210)+cos(2pi*103/210)=1/2
695 名前:132人目の素数さん mailto:sage [2025/03/30(日) 15:10:35.44 ID:IMkopg+/.net] 210未満の数のうち2,3,5,7を素因数に持たない数を並べ1から105の範囲の数を小さい数から並べてcosに入れてかけるとき1/2^((2-1)*(3-1)*(5-1)*(7-1)/2)=1/2^24 cos(2pi*1/210)*cos(2pi*11/210)*cos(2pi*13/210)*cos(2pi*17/210)*cos(2pi*19/210)*cos(2pi*23/210) *cos(2pi*29/210)*cos(2pi*31/210)*cos(2pi*37/210)*cos(2pi*41/210)*cos(2pi*43/210)*cos(2pi*47/210) *cos(2pi*53/210)*cos(2pi*59/210)*cos(2pi*61/210)*cos(2pi*67/210)*cos(2pi*71/210)*cos(2pi*73/210) *cos(2pi*79/210)*cos(2pi*83/210)*cos(2pi*89/210)*cos(2pi*97/210)*cos(2pi*101/210)*cos(2pi*103/210) =1/2^24 0.49760464907467939250145485451399008794631603313899877675706019057553062926... *0.00268847606447940043339634737216026433802777000372318168604976980066769909... *0.00009251490741113835135640760337965928627561527394161722627934749354582976... *0.48159035656948371505659680378556376695312730624624100145325850694447906751... =1/2^24
696 名前:132人目の素数さん mailto:sage [2025/03/30(日) 16:52:22.07 ID:IMkopg+/.net] Πprime(k)=1からn番目の素数の積→2*3*5*7*・・・*prime(n) Π(prime(k)-1)=1からn番目の素数-1の積→(2-1)*(3-1)*(5-1)*(7-1)*・・・*(prime(n)-1) N=1以上,Πprime(k)以下の1からn番目の素因数を持たない数の集合 Σcos(2pi*N/(Πprime(k)))=(-1)^(n) Πcos(2pi*N/(Πprime(k)))=1/2^π(prime(k)-1)
697 名前:132人目の素数さん mailto:sage [2025/03/30(日) 21:44:11.08 ID:IMkopg+/.net] Πcos(2pi*n/(2))=1/2^1 Πcos(2pi*n/(3))=1/2^2 Πcos(2pi*n/(5))=1/2^4 Πcos(2pi*n/(7))=1/2^6 Πcos(2pi*k/(prime(n)))=1/2^(prime(n)-1) cos(2pi*k/prime(n))を掛けると1/2^(prime(n)-1)になる Π(k=1→47)cos(2pi*k/47)=1/2^46 Π(k=1→59)cos(2pi*k/59)=1/2^58
698 名前:132人目の素数さん mailto:sage [2025/03/31(月) 00:31:24.58 ID:VgAQMd6k.net] Πprime(k)=1からn番目の素数の積→2*3*5*7*・・・*prime(n) Π(prime(k)-1)=1からn番目の素数-1の積→(2-1)*(3-1)*(5-1)*(7-1)*・・・*(prime(n)-1) N=1以上,Πprime(k)以下の1からn番目の素因数を持たない数の集合 Σcos(2pi*N/(Πprime(k)))=(-1)^(n) Πcos(2pi*N/(Πprime(k)))=1/2^Π(prime(k)-1) Πsin(2pi*N/(Πprime(k)))=1/2^Π(prime(k)-1)
699 名前:132人目の素数さん mailto:sage [2025/03/31(月) 00:32:05.20 ID:VgAQMd6k.net] cos(2pi*1/15)*cos(2pi*2/15)*cos(2pi*4/15)*cos(2pi*7/15)=1/16 sin(2pi*1/15)*sin(2pi*2/15)*sin(2pi*4/15)*sin(2pi*7/15)=1/16 sin(2pi*1/210)*sin(2pi*11/210)*sin(2pi*13/210)*sin(2pi*17/210)*sin(2pi*19/210)*sin(2pi*23/210) *sin(2pi*29/210)*sin(2pi*31/210)*sin(2pi*37/210)*sin(2pi*41/210)*sin(2pi*43/210)*sin(2pi*47/210) *sin(2pi*53/210)*sin(2pi*59/210)*sin(2pi*61/210)*sin(2pi*67/210)*sin(2pi*71/210)*sin(2pi*73/210) *sin(2pi*79/210)*sin(2pi*83/210)*sin(2pi*89/210)*sin(2pi*97/210)*sin(2pi*101/210)*sin(2pi*103/210) =1/2^24 0.00061054081110522046071047803749662285133522276601401096409089169067689182... *0.48661614045669320587812504974573116162778884759433044718246973964137521379... *0.59928976207727483036590495691414226528994576338419408841857208113607906512... *0.00033476653440065223068650482224720572793789089110667668616534133511212030... =1/2^24
700 名前:132人目の素数さん mailto:sage [2025/04/01(火) 22:45:01.50 ID:QwcKx4Gk.net] Π(k=1→2n)sin(2pi*k/(2n+1))=(-1)^n*(2n+1)/2^(2n) Π(k=1→2n)cos(2pi*k/(2n+1))=1/2^(2n) Π(k=1→2n)tan(2pi*k/(2n+1))=(-1)^n*(2n+1) Π(k=1→2*1)tan(2pi*k/(2*1+1))=-3 -1*Π(k=1→2*1)tan(2pi*k*3/(2*4+1))=-3 Π(k=1→2*4)tan(2pi*k/(2*4+1))=9 tan(2pi*1/9)*tan(2pi*2/9)*tan(2pi*3/9)*tan(2pi*4/9)*tan(2pi*5/9)*tan(2pi*6/9)*tan(2pi*7/9)*tan(2pi*8/9)=9 tan(2pi*1/9)*tan(2pi*2/9)*tan(2pi*4/9)*tan(2pi*5/9)*tan(2pi*7/9)*tan(2pi*8/9)=-3 (2n+1)^2以下の数から(2n+1)を素因数に持つ数を除いてtan(2pi*x/(2n+1))として全てかけると Π(k=1→2n)tan(2pi*k/(2n+1))=(-1)^n*(2n+1)=Π(k=(2n+1)^2から(2n+1)の感覚で数を除いたもの)tan(2pi*k/(2n+1))=(-1)^n*(2n+1) Π(k=7^2未満の7を素因数に持たない数)tan(2nb
701 名前:132人目の素数さん mailto:sage [2025/04/05(土) 22:24:16.55 ID:xWBqf0Vt.net] 11^n,13^n,17^n,19^n,23^n,29^n,31^n,37^n,41^n,43^n,47^n,53^n,59^n,61^n,67^n,71^n,73^n,79^n,83^n,89^n,97^n,101^n,103^n mod 210 n=12のときすべて1 a*b*c未満のa,b,c,を素因数に持たない数をすべてn乗してa*b*cで除算するとき すべて1になるnが必ず存在する
702 名前:132人目の素数さん [2025/07/05(土) 18:19:45.21 ID:BdnyVUeg.net] ゼータ関数はインチキでしょ 最初の100個の素数は整数の数から見ると約20% つまり素数でなく公差5の数列に変えたとしても結果は同じ(1/6)π^2になる 最初の100個から超えると、(n^2)/(n^2-1)なんてほぼ1 だから無限数だけやっても収束するのだ 最初の100個までが肝であって、それは素数の数の同じ数だけの別の数列でもよかったのだ 素数に意味はない
703 名前:132人目の素数さん mailto:sage [2025/12/11(木) 20:16:59.89 ID:oykLUTP4O] 1000桁までの素数を生成できるプログラムを作った。 1000桁までにしたのは、桁数をもっと増やすと処理時間がかかってくるから。