https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E7%9A%84%E5%B8%B0%E7%B4%8D%E6%B3%95 学的帰納法(すうがくてききのうほう、英: mathematical induction)は証明の手法の一つ。自然数に関する命題 P(n) が全ての自然数 n に対して成り立つ事を証明するために、次のような手続きを行う[注 1]。 1.P(1) が成り立つ事を示す。 2.任意の自然数 k に対して、「P(k) ⇒ P(k + 1)」が成り立つ事を示す。 3. 1と2の議論から任意の自然数 n について P(n) が成り立つ事を結論づける。 自然数に関するペアノの公理の中に、ほぼ等価なものが含まれている。
同値な定式化 集合論の枠組みでは、数学的帰納法の原理を次のように表すことができる[3]。 自然数 N の部分集合 A が空でないとき、A に属する最小の自然数が存在する。 この原理からもともとの形の数学的帰納法が導かれることは,次のようにして示せる。 帰納法の仮定 1., 2. を満たす論理式 P(n) が与えられたとする。自然数の部分集合 A を A = { n ∈ N : ¬ P(n) } によって定める。 この A が空集合であるということを示したい。 そうでないと仮定すると、Aに属する最小の自然数 a を取ることができるが、P(0)は成り立っていることから a は0でない。 従って、ある自然数 b について a = b + 1となっているが、a は A に属する最小の自然数であったということ