[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 22:23 / Filesize : 912 KB / Number-of Response : 1120
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

Inter-universal geometry と ABC予想 (応援スレ) 60



730 名前:132人目の素数さん mailto:sage [2021/10/29(金) 18:06:36.68 ID:6pT2N+Ne.net]
>>653 2012/1/31以来約10年アホを晒してる奴が何いってんだ?
現代数学の系譜11 ガロア理論を読む
https://uni.5ch.net/test/read.cgi/math/1328016756/

なんか、アホがギャアギャアわめいてるから
>>643
「降鎖条件を満たすことと、整礎であること、
 つまり任意の空でない部分集合が極小元をもつことは同値である。
 これは極小条件 (minimal condition) とも呼ばれる。」
の証明でもしようか

まず、集合Aについて、a_n∈Aとなる無限長の降鎖(a_n)n∈Nがあったら、
集合{a_n}n∈Nは最小元を持たないから、Aは整列集合でない

そして、もし集合Aが整列集合でないなら、
Aの空でない部分集合Mで最小元を持たないものが存在する
このとき、任意のa∈MについてM_a={x∈M|x<a}と定義すると
M_aはみな空集合でないから、選択公理により、MからMへの写像φで、
任意のa∈Mに対してφ(a)∈M_aとなるものが存在する
そこで、Mの元a_1をとってきて、
φ(a_1)=a_2,φ(a_2)=a_3,…,φ(a_n-1)=a_n,…
とすれば、(an)n∈Nは無限長の降鎖となる

Q.E.D.






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<912KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef