- 730 名前:132人目の素数さん mailto:sage [2021/10/29(金) 18:06:36.68 ID:6pT2N+Ne.net]
- >>653 2012/1/31以来約10年アホを晒してる奴が何いってんだ?
現代数学の系譜11 ガロア理論を読む https://uni.5ch.net/test/read.cgi/math/1328016756/ なんか、アホがギャアギャアわめいてるから >>643の 「降鎖条件を満たすことと、整礎であること、 つまり任意の空でない部分集合が極小元をもつことは同値である。 これは極小条件 (minimal condition) とも呼ばれる。」 の証明でもしようか まず、集合Aについて、a_n∈Aとなる無限長の降鎖(a_n)n∈Nがあったら、 集合{a_n}n∈Nは最小元を持たないから、Aは整列集合でない そして、もし集合Aが整列集合でないなら、 Aの空でない部分集合Mで最小元を持たないものが存在する このとき、任意のa∈MについてM_a={x∈M|x<a}と定義すると M_aはみな空集合でないから、選択公理により、MからMへの写像φで、 任意のa∈Mに対してφ(a)∈M_aとなるものが存在する そこで、Mの元a_1をとってきて、 φ(a_1)=a_2,φ(a_2)=a_3,…,φ(a_n-1)=a_n,… とすれば、(an)n∈Nは無限長の降鎖となる Q.E.D.
|

|