- 688 名前:微分方程式の理論へのアプローチとしてである。1970年ころ以来、D-加群の理論は、主要には代数解析上の佐藤幹夫のアイデアのまとめて、佐藤・ベルンシュタイン多項式(英語版)についての佐藤とヨゼフ・ベルンシュタイン(Joseph Bernstein)の仕事へと発展した。
初期の主要な結果は、柏原正樹の柏原の構成定理(英語版)と柏原の指数定理(英語版)である。D-加群論の方法は、常に、層の理論から導かれ、代数幾何学のアレクサンドル・グロタンディークの仕事からに動機を得たテクニックを使った。 テクニックは、グロタンディーク学派の側からゾグマン・メブク (Zoghman Mebkhout) により開発された。彼は、すべての次元でのリーマン・ヒルベルト対応(英語版)の導来圏の一般的なバージョンを得た。 4 応用 4.1 カズダン・ルースティック予想 4.2 リーマン・ヒルベルト対応 カズダン・ルースティック予想は、D-加群を使い証明された。 関連人物 望月拓郎 つづく [] - [ここ壊れてます]
|

|