- 847 名前:132人目の素数さん mailto:sage [2021/07/13(火) 06:44:43.39 ID:w61FTnjw.net]
- >>800
外接円の半径をrとすると 僊BG = (1/2)rr sin(2C) = rr sin(C) cos(C), 僊BC = 2rr sin(A) sin(B) sin(C), 題意より 僊BG = (1/8)僊BC, cos(C) = (1/4)sin(A)sin(B), また A + B + C = 180° A = 60° (← 題意) これを解いて A = 60° B = arctan(4/√27) = (1/2)arccos(11/43) = 37.589089468975° C = arctan(13/√3) = (1/2)(π - arccos(83/86)) = 82.410910531025° ところで ∠AGR = 180°- 2C = 15.178178938° ∠GAR = 90°- B = 52.410910531025° 正弦定理より 僊GR = rr cos(B)sin(2C)/{2cos(B+2C-180)} = 0.1122092715867 rr = 3, ∴ r = 5.1706632668738 僊BC = 28, 僊BG = 7/2,
|

|